Properties

Label 2-31-31.23-c4-0-1
Degree $2$
Conductor $31$
Sign $-0.412 + 0.911i$
Analytic cond. $3.20446$
Root an. cond. $1.79010$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.30 + 7.08i)2-s + (0.135 − 0.0439i)3-s + (−31.9 − 23.2i)4-s − 18.1·5-s + 1.05i·6-s + (10.5 + 7.69i)7-s + (141. − 102. i)8-s + (−65.5 + 47.5i)9-s + (41.7 − 128. i)10-s + (43.9 − 60.5i)11-s + (−5.34 − 1.73i)12-s + (−266. + 86.6i)13-s + (−78.8 + 57.3i)14-s + (−2.45 + 0.798i)15-s + (207. + 637. i)16-s + (56.3 + 77.6i)17-s + ⋯
L(s)  = 1  + (−0.575 + 1.77i)2-s + (0.0150 − 0.00488i)3-s + (−1.99 − 1.45i)4-s − 0.726·5-s + 0.0294i·6-s + (0.216 + 0.157i)7-s + (2.20 − 1.60i)8-s + (−0.808 + 0.587i)9-s + (0.417 − 1.28i)10-s + (0.363 − 0.500i)11-s + (−0.0370 − 0.0120i)12-s + (−1.57 + 0.512i)13-s + (−0.402 + 0.292i)14-s + (−0.0109 + 0.00354i)15-s + (0.809 + 2.49i)16-s + (0.195 + 0.268i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.412 + 0.911i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.412 + 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31\)
Sign: $-0.412 + 0.911i$
Analytic conductor: \(3.20446\)
Root analytic conductor: \(1.79010\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{31} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 31,\ (\ :2),\ -0.412 + 0.911i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.178643 - 0.276933i\)
\(L(\frac12)\) \(\approx\) \(0.178643 - 0.276933i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 + (-518. - 809. i)T \)
good2 \( 1 + (2.30 - 7.08i)T + (-12.9 - 9.40i)T^{2} \)
3 \( 1 + (-0.135 + 0.0439i)T + (65.5 - 47.6i)T^{2} \)
5 \( 1 + 18.1T + 625T^{2} \)
7 \( 1 + (-10.5 - 7.69i)T + (741. + 2.28e3i)T^{2} \)
11 \( 1 + (-43.9 + 60.5i)T + (-4.52e3 - 1.39e4i)T^{2} \)
13 \( 1 + (266. - 86.6i)T + (2.31e4 - 1.67e4i)T^{2} \)
17 \( 1 + (-56.3 - 77.6i)T + (-2.58e4 + 7.94e4i)T^{2} \)
19 \( 1 + (160. - 493. i)T + (-1.05e5 - 7.66e4i)T^{2} \)
23 \( 1 + (349. + 481. i)T + (-8.64e4 + 2.66e5i)T^{2} \)
29 \( 1 + (-1.58e3 - 513. i)T + (5.72e5 + 4.15e5i)T^{2} \)
37 \( 1 + 601. iT - 1.87e6T^{2} \)
41 \( 1 + (547. - 1.68e3i)T + (-2.28e6 - 1.66e6i)T^{2} \)
43 \( 1 + (-705. - 229. i)T + (2.76e6 + 2.00e6i)T^{2} \)
47 \( 1 + (-542. - 1.67e3i)T + (-3.94e6 + 2.86e6i)T^{2} \)
53 \( 1 + (651. + 896. i)T + (-2.43e6 + 7.50e6i)T^{2} \)
59 \( 1 + (1.01e3 + 3.11e3i)T + (-9.80e6 + 7.12e6i)T^{2} \)
61 \( 1 + 2.48e3iT - 1.38e7T^{2} \)
67 \( 1 + 6.64e3T + 2.01e7T^{2} \)
71 \( 1 + (5.60e3 - 4.06e3i)T + (7.85e6 - 2.41e7i)T^{2} \)
73 \( 1 + (1.03e3 - 1.42e3i)T + (-8.77e6 - 2.70e7i)T^{2} \)
79 \( 1 + (350. + 481. i)T + (-1.20e7 + 3.70e7i)T^{2} \)
83 \( 1 + (-8.29e3 - 2.69e3i)T + (3.83e7 + 2.78e7i)T^{2} \)
89 \( 1 + (-1.44e3 + 1.98e3i)T + (-1.93e7 - 5.96e7i)T^{2} \)
97 \( 1 + (-3.87e3 - 2.81e3i)T + (2.73e7 + 8.41e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.72390083045924792113345744585, −16.04243482027635496348634719381, −14.57122071104631968598058686918, −14.21717912954087347645153159627, −12.09003262754810707122724269308, −10.17653455721543946596150054813, −8.567517940237597520987097911342, −7.81485231204885887399739744469, −6.29953898553129758782550403462, −4.75257677020704580942001988655, 0.29032956454309304634584701830, 2.73833986452707429664198985434, 4.43923295088971986638141586972, 7.74398231186942266197934360347, 9.136641958696322850302909964838, 10.27053102498199946060663139145, 11.78432526720690466938381200910, 12.06617437852244875167785813733, 13.69472767938577645180812043218, 15.18911691000276761520635208342

Graph of the $Z$-function along the critical line