Properties

Label 2-31-31.17-c2-0-1
Degree $2$
Conductor $31$
Sign $0.688 - 0.725i$
Analytic cond. $0.844688$
Root an. cond. $0.919069$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.331 + 1.02i)2-s + (0.293 + 0.263i)3-s + (2.30 + 1.67i)4-s + (−0.793 + 1.37i)5-s + (−0.366 + 0.211i)6-s + (0.503 − 4.79i)7-s + (−5.94 + 4.31i)8-s + (−0.924 − 8.79i)9-s + (−1.13 − 1.26i)10-s + (−3.31 − 7.44i)11-s + (0.233 + 1.09i)12-s + (0.723 − 3.40i)13-s + (4.71 + 2.10i)14-s + (−0.595 + 0.193i)15-s + (1.08 + 3.34i)16-s + (−8.55 + 19.2i)17-s + ⋯
L(s)  = 1  + (−0.165 + 0.510i)2-s + (0.0977 + 0.0879i)3-s + (0.576 + 0.418i)4-s + (−0.158 + 0.274i)5-s + (−0.0610 + 0.0352i)6-s + (0.0719 − 0.684i)7-s + (−0.742 + 0.539i)8-s + (−0.102 − 0.977i)9-s + (−0.113 − 0.126i)10-s + (−0.301 − 0.677i)11-s + (0.0194 + 0.0916i)12-s + (0.0556 − 0.261i)13-s + (0.337 + 0.150i)14-s + (−0.0396 + 0.0128i)15-s + (0.0679 + 0.209i)16-s + (−0.503 + 1.13i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.688 - 0.725i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.688 - 0.725i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31\)
Sign: $0.688 - 0.725i$
Analytic conductor: \(0.844688\)
Root analytic conductor: \(0.919069\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{31} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 31,\ (\ :1),\ 0.688 - 0.725i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.921035 + 0.395569i\)
\(L(\frac12)\) \(\approx\) \(0.921035 + 0.395569i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 + (-19.3 + 24.2i)T \)
good2 \( 1 + (0.331 - 1.02i)T + (-3.23 - 2.35i)T^{2} \)
3 \( 1 + (-0.293 - 0.263i)T + (0.940 + 8.95i)T^{2} \)
5 \( 1 + (0.793 - 1.37i)T + (-12.5 - 21.6i)T^{2} \)
7 \( 1 + (-0.503 + 4.79i)T + (-47.9 - 10.1i)T^{2} \)
11 \( 1 + (3.31 + 7.44i)T + (-80.9 + 89.9i)T^{2} \)
13 \( 1 + (-0.723 + 3.40i)T + (-154. - 68.7i)T^{2} \)
17 \( 1 + (8.55 - 19.2i)T + (-193. - 214. i)T^{2} \)
19 \( 1 + (-5.81 + 1.23i)T + (329. - 146. i)T^{2} \)
23 \( 1 + (-3.72 - 5.12i)T + (-163. + 503. i)T^{2} \)
29 \( 1 + (23.1 + 7.52i)T + (680. + 494. i)T^{2} \)
37 \( 1 + (58.1 - 33.5i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-20.8 - 23.1i)T + (-175. + 1.67e3i)T^{2} \)
43 \( 1 + (9.34 + 43.9i)T + (-1.68e3 + 752. i)T^{2} \)
47 \( 1 + (-15.6 - 48.2i)T + (-1.78e3 + 1.29e3i)T^{2} \)
53 \( 1 + (-10.4 + 1.09i)T + (2.74e3 - 584. i)T^{2} \)
59 \( 1 + (-52.3 + 58.1i)T + (-363. - 3.46e3i)T^{2} \)
61 \( 1 - 91.3iT - 3.72e3T^{2} \)
67 \( 1 + (32.1 - 55.7i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + (14.6 + 139. i)T + (-4.93e3 + 1.04e3i)T^{2} \)
73 \( 1 + (41.2 + 92.5i)T + (-3.56e3 + 3.96e3i)T^{2} \)
79 \( 1 + (13.2 - 29.8i)T + (-4.17e3 - 4.63e3i)T^{2} \)
83 \( 1 + (-57.5 + 51.8i)T + (720. - 6.85e3i)T^{2} \)
89 \( 1 + (-82.1 + 113. i)T + (-2.44e3 - 7.53e3i)T^{2} \)
97 \( 1 + (-74.1 - 53.9i)T + (2.90e3 + 8.94e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.90530294567250477792892862371, −15.59851486029157550268513185628, −14.82643377547792046163074389493, −13.26027801480842449280267979992, −11.79100587904423738875840373289, −10.63117147041381302612235792213, −8.777292608637559011917901799894, −7.44437531101708065153832983238, −6.13970035589132295948844727048, −3.46549600703743151666220635704, 2.35212008292846436770985879515, 5.20283385923432129194723314570, 7.11652885956764420441368366180, 8.878511358639734711750019730956, 10.31047274919594204080266966488, 11.51906180782569753179529971532, 12.58001265373362707825015706397, 14.14103952943579450612348882598, 15.51451931689855953087848935172, 16.30665140387731313449375833381

Graph of the $Z$-function along the critical line