L(s) = 1 | − 7i·7-s + 54·11-s + 55i·13-s − 18i·17-s + 25·19-s − 18i·23-s − 54·29-s − 271·31-s + 314i·37-s + 360·41-s + 163i·43-s − 522i·47-s + 294·49-s − 36i·53-s + 126·59-s + ⋯ |
L(s) = 1 | − 0.377i·7-s + 1.48·11-s + 1.17i·13-s − 0.256i·17-s + 0.301·19-s − 0.163i·23-s − 0.345·29-s − 1.57·31-s + 1.39i·37-s + 1.37·41-s + 0.578i·43-s − 1.62i·47-s + 0.857·49-s − 0.0933i·53-s + 0.278·59-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.894−0.447i)Λ(4−s)
Λ(s)=(=(900s/2ΓC(s+3/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
53.1017 |
Root analytic conductor: |
7.28709 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :3/2), 0.894−0.447i)
|
Particular Values
L(2) |
≈ |
2.196241152 |
L(21) |
≈ |
2.196241152 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+7iT−343T2 |
| 11 | 1−54T+1.33e3T2 |
| 13 | 1−55iT−2.19e3T2 |
| 17 | 1+18iT−4.91e3T2 |
| 19 | 1−25T+6.85e3T2 |
| 23 | 1+18iT−1.21e4T2 |
| 29 | 1+54T+2.43e4T2 |
| 31 | 1+271T+2.97e4T2 |
| 37 | 1−314iT−5.06e4T2 |
| 41 | 1−360T+6.89e4T2 |
| 43 | 1−163iT−7.95e4T2 |
| 47 | 1+522iT−1.03e5T2 |
| 53 | 1+36iT−1.48e5T2 |
| 59 | 1−126T+2.05e5T2 |
| 61 | 1−47T+2.26e5T2 |
| 67 | 1+343iT−3.00e5T2 |
| 71 | 1−1.08e3T+3.57e5T2 |
| 73 | 1−1.05e3iT−3.89e5T2 |
| 79 | 1−568T+4.93e5T2 |
| 83 | 1−1.42e3iT−5.71e5T2 |
| 89 | 1−1.44e3T+7.04e5T2 |
| 97 | 1+439iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.492121335054437903208358807526, −9.214571536136264920504379289044, −8.130800541329968481664752096672, −7.01019777164308631751311503509, −6.58937134875236234111564721511, −5.40316328573450888373305853268, −4.25460544231362368151426102862, −3.61310313425532991933151187177, −2.08055695867881172962423382344, −0.978311506715119554673637558918,
0.71826212018856001737328380193, 1.99150276417406948795029389390, 3.31631711913275901123032187752, 4.15261123177848659814572961117, 5.45849187789021591257034664522, 6.06772443958902467981983828011, 7.17845278542478162134890350893, 7.923206977798691821157488472972, 9.082140258860466943296266022024, 9.378385635052092194339047562209