Properties

Label 2-30e2-1.1-c3-0-15
Degree $2$
Conductor $900$
Sign $-1$
Analytic cond. $53.1017$
Root an. cond. $7.28709$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 13·7-s − 6·11-s + 5·13-s + 78·17-s + 65·19-s − 138·23-s − 66·29-s + 299·31-s − 214·37-s − 360·41-s + 203·43-s − 78·47-s − 174·49-s − 636·53-s − 786·59-s + 467·61-s − 217·67-s + 360·71-s − 286·73-s + 78·77-s + 272·79-s − 498·83-s − 65·91-s − 511·97-s + 1.81e3·101-s − 1.70e3·103-s − 1.23e3·107-s + ⋯
L(s)  = 1  − 0.701·7-s − 0.164·11-s + 0.106·13-s + 1.11·17-s + 0.784·19-s − 1.25·23-s − 0.422·29-s + 1.73·31-s − 0.950·37-s − 1.37·41-s + 0.719·43-s − 0.242·47-s − 0.507·49-s − 1.64·53-s − 1.73·59-s + 0.980·61-s − 0.395·67-s + 0.601·71-s − 0.458·73-s + 0.115·77-s + 0.387·79-s − 0.658·83-s − 0.0748·91-s − 0.534·97-s + 1.78·101-s − 1.63·103-s − 1.11·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(53.1017\)
Root analytic conductor: \(7.28709\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 900,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 13 T + p^{3} T^{2} \)
11 \( 1 + 6 T + p^{3} T^{2} \)
13 \( 1 - 5 T + p^{3} T^{2} \)
17 \( 1 - 78 T + p^{3} T^{2} \)
19 \( 1 - 65 T + p^{3} T^{2} \)
23 \( 1 + 6 p T + p^{3} T^{2} \)
29 \( 1 + 66 T + p^{3} T^{2} \)
31 \( 1 - 299 T + p^{3} T^{2} \)
37 \( 1 + 214 T + p^{3} T^{2} \)
41 \( 1 + 360 T + p^{3} T^{2} \)
43 \( 1 - 203 T + p^{3} T^{2} \)
47 \( 1 + 78 T + p^{3} T^{2} \)
53 \( 1 + 12 p T + p^{3} T^{2} \)
59 \( 1 + 786 T + p^{3} T^{2} \)
61 \( 1 - 467 T + p^{3} T^{2} \)
67 \( 1 + 217 T + p^{3} T^{2} \)
71 \( 1 - 360 T + p^{3} T^{2} \)
73 \( 1 + 286 T + p^{3} T^{2} \)
79 \( 1 - 272 T + p^{3} T^{2} \)
83 \( 1 + 6 p T + p^{3} T^{2} \)
89 \( 1 + p^{3} T^{2} \)
97 \( 1 + 511 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.569606235179620032877442203128, −8.353626751179776151582937505479, −7.69917994605502400072877346541, −6.65342552078132698315102450649, −5.87581161801070877355223699777, −4.91970529534829414223163678505, −3.68986477595632227870410713524, −2.88384454312624688425462428218, −1.43026964004570665953934602828, 0, 1.43026964004570665953934602828, 2.88384454312624688425462428218, 3.68986477595632227870410713524, 4.91970529534829414223163678505, 5.87581161801070877355223699777, 6.65342552078132698315102450649, 7.69917994605502400072877346541, 8.353626751179776151582937505479, 9.569606235179620032877442203128

Graph of the $Z$-function along the critical line