L(s) = 1 | − 13·7-s − 6·11-s + 5·13-s + 78·17-s + 65·19-s − 138·23-s − 66·29-s + 299·31-s − 214·37-s − 360·41-s + 203·43-s − 78·47-s − 174·49-s − 636·53-s − 786·59-s + 467·61-s − 217·67-s + 360·71-s − 286·73-s + 78·77-s + 272·79-s − 498·83-s − 65·91-s − 511·97-s + 1.81e3·101-s − 1.70e3·103-s − 1.23e3·107-s + ⋯ |
L(s) = 1 | − 0.701·7-s − 0.164·11-s + 0.106·13-s + 1.11·17-s + 0.784·19-s − 1.25·23-s − 0.422·29-s + 1.73·31-s − 0.950·37-s − 1.37·41-s + 0.719·43-s − 0.242·47-s − 0.507·49-s − 1.64·53-s − 1.73·59-s + 0.980·61-s − 0.395·67-s + 0.601·71-s − 0.458·73-s + 0.115·77-s + 0.387·79-s − 0.658·83-s − 0.0748·91-s − 0.534·97-s + 1.78·101-s − 1.63·103-s − 1.11·107-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(900s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+13T+p3T2 |
| 11 | 1+6T+p3T2 |
| 13 | 1−5T+p3T2 |
| 17 | 1−78T+p3T2 |
| 19 | 1−65T+p3T2 |
| 23 | 1+6pT+p3T2 |
| 29 | 1+66T+p3T2 |
| 31 | 1−299T+p3T2 |
| 37 | 1+214T+p3T2 |
| 41 | 1+360T+p3T2 |
| 43 | 1−203T+p3T2 |
| 47 | 1+78T+p3T2 |
| 53 | 1+12pT+p3T2 |
| 59 | 1+786T+p3T2 |
| 61 | 1−467T+p3T2 |
| 67 | 1+217T+p3T2 |
| 71 | 1−360T+p3T2 |
| 73 | 1+286T+p3T2 |
| 79 | 1−272T+p3T2 |
| 83 | 1+6pT+p3T2 |
| 89 | 1+p3T2 |
| 97 | 1+511T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.569606235179620032877442203128, −8.353626751179776151582937505479, −7.69917994605502400072877346541, −6.65342552078132698315102450649, −5.87581161801070877355223699777, −4.91970529534829414223163678505, −3.68986477595632227870410713524, −2.88384454312624688425462428218, −1.43026964004570665953934602828, 0,
1.43026964004570665953934602828, 2.88384454312624688425462428218, 3.68986477595632227870410713524, 4.91970529534829414223163678505, 5.87581161801070877355223699777, 6.65342552078132698315102450649, 7.69917994605502400072877346541, 8.353626751179776151582937505479, 9.569606235179620032877442203128