Properties

Label 2-309-103.100-c1-0-1
Degree $2$
Conductor $309$
Sign $-0.441 + 0.897i$
Analytic cond. $2.46737$
Root an. cond. $1.57078$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.81 + 1.12i)2-s + (0.273 + 0.961i)3-s + (1.14 − 2.29i)4-s + (−2.35 + 0.913i)5-s + (−1.57 − 1.43i)6-s + (−0.431 + 4.65i)7-s + (0.111 + 1.20i)8-s + (−0.850 + 0.526i)9-s + (3.25 − 4.31i)10-s + (0.992 − 0.614i)11-s + (2.52 + 0.471i)12-s + (0.222 − 2.40i)13-s + (−4.45 − 8.94i)14-s + (−1.52 − 2.01i)15-s + (1.53 + 2.02i)16-s + (−5.21 + 4.75i)17-s + ⋯
L(s)  = 1  + (−1.28 + 0.795i)2-s + (0.157 + 0.555i)3-s + (0.572 − 1.14i)4-s + (−1.05 + 0.408i)5-s + (−0.644 − 0.587i)6-s + (−0.163 + 1.76i)7-s + (0.0395 + 0.426i)8-s + (−0.283 + 0.175i)9-s + (1.02 − 1.36i)10-s + (0.299 − 0.185i)11-s + (0.728 + 0.136i)12-s + (0.0617 − 0.666i)13-s + (−1.19 − 2.39i)14-s + (−0.393 − 0.520i)15-s + (0.383 + 0.507i)16-s + (−1.26 + 1.15i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.441 + 0.897i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.441 + 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $-0.441 + 0.897i$
Analytic conductor: \(2.46737\)
Root analytic conductor: \(1.57078\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{309} (100, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 309,\ (\ :1/2),\ -0.441 + 0.897i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.128036 - 0.205663i\)
\(L(\frac12)\) \(\approx\) \(0.128036 - 0.205663i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.273 - 0.961i)T \)
103 \( 1 + (-6.01 - 8.17i)T \)
good2 \( 1 + (1.81 - 1.12i)T + (0.891 - 1.79i)T^{2} \)
5 \( 1 + (2.35 - 0.913i)T + (3.69 - 3.36i)T^{2} \)
7 \( 1 + (0.431 - 4.65i)T + (-6.88 - 1.28i)T^{2} \)
11 \( 1 + (-0.992 + 0.614i)T + (4.90 - 9.84i)T^{2} \)
13 \( 1 + (-0.222 + 2.40i)T + (-12.7 - 2.38i)T^{2} \)
17 \( 1 + (5.21 - 4.75i)T + (1.56 - 16.9i)T^{2} \)
19 \( 1 + (-1.29 + 4.53i)T + (-16.1 - 10.0i)T^{2} \)
23 \( 1 + (5.59 + 3.46i)T + (10.2 + 20.5i)T^{2} \)
29 \( 1 + (-7.38 + 2.86i)T + (21.4 - 19.5i)T^{2} \)
31 \( 1 + (2.92 + 3.87i)T + (-8.48 + 29.8i)T^{2} \)
37 \( 1 + (-1.22 - 0.229i)T + (34.5 + 13.3i)T^{2} \)
41 \( 1 + (-6.68 - 2.58i)T + (30.2 + 27.6i)T^{2} \)
43 \( 1 + (6.73 - 1.25i)T + (40.0 - 15.5i)T^{2} \)
47 \( 1 + 1.85T + 47T^{2} \)
53 \( 1 + (-0.377 + 1.32i)T + (-45.0 - 27.9i)T^{2} \)
59 \( 1 + (-0.942 - 10.1i)T + (-57.9 + 10.8i)T^{2} \)
61 \( 1 + (5.19 - 4.73i)T + (5.62 - 60.7i)T^{2} \)
67 \( 1 + (-1.20 - 13.0i)T + (-65.8 + 12.3i)T^{2} \)
71 \( 1 + (4.27 + 1.65i)T + (52.4 + 47.8i)T^{2} \)
73 \( 1 + (-1.49 - 0.579i)T + (53.9 + 49.1i)T^{2} \)
79 \( 1 + (11.1 - 4.32i)T + (58.3 - 53.2i)T^{2} \)
83 \( 1 + (-0.199 + 2.15i)T + (-81.5 - 15.2i)T^{2} \)
89 \( 1 + (-7.01 - 14.0i)T + (-53.6 + 71.0i)T^{2} \)
97 \( 1 + (4.05 + 3.69i)T + (8.95 + 96.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.00013858835102391723370805759, −11.18804488847666104123318321075, −10.21005878074929753814969497040, −9.178477186783451486999266786998, −8.512077454829293167588816995643, −7.973771881925090935193377074635, −6.61056856198421382609888236600, −5.81623556270910404708567435446, −4.16982727339138699746903823658, −2.64019888908349777515547113137, 0.26451975040935556703139999887, 1.59878703467455913729999426014, 3.45626327656676748370551703696, 4.51234624997929670899680123423, 6.76062239613236810919470293596, 7.53125804893702786234532892468, 8.197749750197395523042445997486, 9.234025315043501077254604295334, 10.11346835212506632172787937372, 11.06474984172099457873731478902

Graph of the $Z$-function along the critical line