Properties

Label 2-309-1.1-c5-0-50
Degree $2$
Conductor $309$
Sign $-1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.87·2-s + 9·3-s + 65.5·4-s + 15.4·5-s − 88.8·6-s − 200.·7-s − 330.·8-s + 81·9-s − 152.·10-s − 32.4·11-s + 589.·12-s + 878.·13-s + 1.97e3·14-s + 139.·15-s + 1.17e3·16-s − 446.·17-s − 799.·18-s + 329.·19-s + 1.01e3·20-s − 1.80e3·21-s + 320.·22-s + 839.·23-s − 2.97e3·24-s − 2.88e3·25-s − 8.67e3·26-s + 729·27-s − 1.31e4·28-s + ⋯
L(s)  = 1  − 1.74·2-s + 0.577·3-s + 2.04·4-s + 0.276·5-s − 1.00·6-s − 1.54·7-s − 1.82·8-s + 0.333·9-s − 0.483·10-s − 0.0808·11-s + 1.18·12-s + 1.44·13-s + 2.69·14-s + 0.159·15-s + 1.14·16-s − 0.374·17-s − 0.581·18-s + 0.209·19-s + 0.566·20-s − 0.892·21-s + 0.141·22-s + 0.330·23-s − 1.05·24-s − 0.923·25-s − 2.51·26-s + 0.192·27-s − 3.16·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $-1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
103 \( 1 - 1.06e4T \)
good2 \( 1 + 9.87T + 32T^{2} \)
5 \( 1 - 15.4T + 3.12e3T^{2} \)
7 \( 1 + 200.T + 1.68e4T^{2} \)
11 \( 1 + 32.4T + 1.61e5T^{2} \)
13 \( 1 - 878.T + 3.71e5T^{2} \)
17 \( 1 + 446.T + 1.41e6T^{2} \)
19 \( 1 - 329.T + 2.47e6T^{2} \)
23 \( 1 - 839.T + 6.43e6T^{2} \)
29 \( 1 - 2.45e3T + 2.05e7T^{2} \)
31 \( 1 + 2.88e3T + 2.86e7T^{2} \)
37 \( 1 + 5.60e3T + 6.93e7T^{2} \)
41 \( 1 + 1.78e3T + 1.15e8T^{2} \)
43 \( 1 - 3.73e3T + 1.47e8T^{2} \)
47 \( 1 - 2.05e4T + 2.29e8T^{2} \)
53 \( 1 + 3.03e3T + 4.18e8T^{2} \)
59 \( 1 - 2.29e4T + 7.14e8T^{2} \)
61 \( 1 + 4.87e4T + 8.44e8T^{2} \)
67 \( 1 + 1.65e4T + 1.35e9T^{2} \)
71 \( 1 + 3.46e4T + 1.80e9T^{2} \)
73 \( 1 + 1.86e4T + 2.07e9T^{2} \)
79 \( 1 + 9.61e3T + 3.07e9T^{2} \)
83 \( 1 - 5.68e4T + 3.93e9T^{2} \)
89 \( 1 - 9.77e4T + 5.58e9T^{2} \)
97 \( 1 + 8.27e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16294940105887186538297168081, −9.219993294524627771672243580989, −8.853633018674050460469434131342, −7.73211608152014692295283937351, −6.75321548327538317689083986459, −5.99958994078864601685973857698, −3.68904110059084172560130398996, −2.59534242735737427254218101335, −1.29173534515059188367447794945, 0, 1.29173534515059188367447794945, 2.59534242735737427254218101335, 3.68904110059084172560130398996, 5.99958994078864601685973857698, 6.75321548327538317689083986459, 7.73211608152014692295283937351, 8.853633018674050460469434131342, 9.219993294524627771672243580989, 10.16294940105887186538297168081

Graph of the $Z$-function along the critical line