Properties

Label 2-309-1.1-c5-0-45
Degree $2$
Conductor $309$
Sign $1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.40·2-s − 9·3-s + 38.5·4-s + 77.4·5-s − 75.6·6-s + 52.6·7-s + 55.2·8-s + 81·9-s + 650.·10-s + 723.·11-s − 347.·12-s − 866.·13-s + 442.·14-s − 697.·15-s − 770.·16-s + 1.18e3·17-s + 680.·18-s + 2.70e3·19-s + 2.98e3·20-s − 474.·21-s + 6.08e3·22-s − 4.71e3·23-s − 497.·24-s + 2.87e3·25-s − 7.27e3·26-s − 729·27-s + 2.03e3·28-s + ⋯
L(s)  = 1  + 1.48·2-s − 0.577·3-s + 1.20·4-s + 1.38·5-s − 0.857·6-s + 0.406·7-s + 0.305·8-s + 0.333·9-s + 2.05·10-s + 1.80·11-s − 0.696·12-s − 1.42·13-s + 0.603·14-s − 0.799·15-s − 0.752·16-s + 0.991·17-s + 0.495·18-s + 1.71·19-s + 1.67·20-s − 0.234·21-s + 2.67·22-s − 1.86·23-s − 0.176·24-s + 0.919·25-s − 2.11·26-s − 0.192·27-s + 0.490·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.744785148\)
\(L(\frac12)\) \(\approx\) \(5.744785148\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
103 \( 1 - 1.06e4T \)
good2 \( 1 - 8.40T + 32T^{2} \)
5 \( 1 - 77.4T + 3.12e3T^{2} \)
7 \( 1 - 52.6T + 1.68e4T^{2} \)
11 \( 1 - 723.T + 1.61e5T^{2} \)
13 \( 1 + 866.T + 3.71e5T^{2} \)
17 \( 1 - 1.18e3T + 1.41e6T^{2} \)
19 \( 1 - 2.70e3T + 2.47e6T^{2} \)
23 \( 1 + 4.71e3T + 6.43e6T^{2} \)
29 \( 1 - 5.35e3T + 2.05e7T^{2} \)
31 \( 1 + 4.98e3T + 2.86e7T^{2} \)
37 \( 1 - 9.71e3T + 6.93e7T^{2} \)
41 \( 1 - 1.29e4T + 1.15e8T^{2} \)
43 \( 1 - 1.90e4T + 1.47e8T^{2} \)
47 \( 1 + 7.07e3T + 2.29e8T^{2} \)
53 \( 1 + 7.30e3T + 4.18e8T^{2} \)
59 \( 1 - 2.31e4T + 7.14e8T^{2} \)
61 \( 1 + 1.19e4T + 8.44e8T^{2} \)
67 \( 1 + 6.48e3T + 1.35e9T^{2} \)
71 \( 1 - 2.07e4T + 1.80e9T^{2} \)
73 \( 1 - 5.60e4T + 2.07e9T^{2} \)
79 \( 1 - 4.91e4T + 3.07e9T^{2} \)
83 \( 1 + 2.48e4T + 3.93e9T^{2} \)
89 \( 1 + 8.57e4T + 5.58e9T^{2} \)
97 \( 1 - 6.87e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.28783319345048203011772354003, −9.771585782322198314053242608202, −9.493750453923955998481579073659, −7.53685597408008109536693497644, −6.38959576262985245713349393537, −5.76063149805846099248403104566, −4.96605045654613108659082252648, −3.90003636489777826516019260009, −2.46036754365588865599730330702, −1.24898366436183763078235564005, 1.24898366436183763078235564005, 2.46036754365588865599730330702, 3.90003636489777826516019260009, 4.96605045654613108659082252648, 5.76063149805846099248403104566, 6.38959576262985245713349393537, 7.53685597408008109536693497644, 9.493750453923955998481579073659, 9.771585782322198314053242608202, 11.28783319345048203011772354003

Graph of the $Z$-function along the critical line