Properties

Label 2-309-1.1-c5-0-43
Degree $2$
Conductor $309$
Sign $-1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.35·2-s − 9·3-s − 30.1·4-s − 30.1·5-s − 12.1·6-s + 2.34·7-s − 84.1·8-s + 81·9-s − 40.8·10-s + 90.6·11-s + 271.·12-s + 356.·13-s + 3.17·14-s + 271.·15-s + 851.·16-s + 1.28e3·17-s + 109.·18-s + 2.08e3·19-s + 910.·20-s − 21.0·21-s + 122.·22-s − 4.86e3·23-s + 757.·24-s − 2.21e3·25-s + 482.·26-s − 729·27-s − 70.7·28-s + ⋯
L(s)  = 1  + 0.239·2-s − 0.577·3-s − 0.942·4-s − 0.539·5-s − 0.138·6-s + 0.0180·7-s − 0.464·8-s + 0.333·9-s − 0.129·10-s + 0.225·11-s + 0.544·12-s + 0.585·13-s + 0.00432·14-s + 0.311·15-s + 0.831·16-s + 1.07·17-s + 0.0797·18-s + 1.32·19-s + 0.508·20-s − 0.0104·21-s + 0.0540·22-s − 1.91·23-s + 0.268·24-s − 0.708·25-s + 0.140·26-s − 0.192·27-s − 0.0170·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $-1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
103 \( 1 + 1.06e4T \)
good2 \( 1 - 1.35T + 32T^{2} \)
5 \( 1 + 30.1T + 3.12e3T^{2} \)
7 \( 1 - 2.34T + 1.68e4T^{2} \)
11 \( 1 - 90.6T + 1.61e5T^{2} \)
13 \( 1 - 356.T + 3.71e5T^{2} \)
17 \( 1 - 1.28e3T + 1.41e6T^{2} \)
19 \( 1 - 2.08e3T + 2.47e6T^{2} \)
23 \( 1 + 4.86e3T + 6.43e6T^{2} \)
29 \( 1 - 4.16e3T + 2.05e7T^{2} \)
31 \( 1 + 657.T + 2.86e7T^{2} \)
37 \( 1 - 3.97e3T + 6.93e7T^{2} \)
41 \( 1 + 4.38e3T + 1.15e8T^{2} \)
43 \( 1 + 4.07e3T + 1.47e8T^{2} \)
47 \( 1 + 8.09e3T + 2.29e8T^{2} \)
53 \( 1 - 1.43e4T + 4.18e8T^{2} \)
59 \( 1 + 1.67e4T + 7.14e8T^{2} \)
61 \( 1 - 2.29e4T + 8.44e8T^{2} \)
67 \( 1 - 3.79e4T + 1.35e9T^{2} \)
71 \( 1 + 4.73e4T + 1.80e9T^{2} \)
73 \( 1 + 7.57e4T + 2.07e9T^{2} \)
79 \( 1 + 6.14e4T + 3.07e9T^{2} \)
83 \( 1 - 6.36e3T + 3.93e9T^{2} \)
89 \( 1 - 7.56e4T + 5.58e9T^{2} \)
97 \( 1 - 4.48e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22930698511452153810686014902, −9.638921277028553117164297985937, −8.362728289164242162700741301144, −7.63858023478296422566950895674, −6.17028932536458881071721997980, −5.35021524617546971847875260589, −4.22066991975675478869055157438, −3.37635386883728808992152731806, −1.22219700874269877549174428727, 0, 1.22219700874269877549174428727, 3.37635386883728808992152731806, 4.22066991975675478869055157438, 5.35021524617546971847875260589, 6.17028932536458881071721997980, 7.63858023478296422566950895674, 8.362728289164242162700741301144, 9.638921277028553117164297985937, 10.22930698511452153810686014902

Graph of the $Z$-function along the critical line