Properties

Label 2-309-1.1-c5-0-39
Degree $2$
Conductor $309$
Sign $-1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.91·2-s + 9·3-s − 7.85·4-s − 77.7·5-s − 44.2·6-s − 96.5·7-s + 195.·8-s + 81·9-s + 382.·10-s − 65.0·11-s − 70.6·12-s + 74.4·13-s + 474.·14-s − 700.·15-s − 711.·16-s + 805.·17-s − 398.·18-s + 2.41e3·19-s + 610.·20-s − 869.·21-s + 319.·22-s + 2.62e3·23-s + 1.76e3·24-s + 2.92e3·25-s − 365.·26-s + 729·27-s + 758.·28-s + ⋯
L(s)  = 1  − 0.868·2-s + 0.577·3-s − 0.245·4-s − 1.39·5-s − 0.501·6-s − 0.744·7-s + 1.08·8-s + 0.333·9-s + 1.20·10-s − 0.162·11-s − 0.141·12-s + 0.122·13-s + 0.647·14-s − 0.803·15-s − 0.694·16-s + 0.675·17-s − 0.289·18-s + 1.53·19-s + 0.341·20-s − 0.430·21-s + 0.140·22-s + 1.03·23-s + 0.624·24-s + 0.936·25-s − 0.106·26-s + 0.192·27-s + 0.182·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $-1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
103 \( 1 - 1.06e4T \)
good2 \( 1 + 4.91T + 32T^{2} \)
5 \( 1 + 77.7T + 3.12e3T^{2} \)
7 \( 1 + 96.5T + 1.68e4T^{2} \)
11 \( 1 + 65.0T + 1.61e5T^{2} \)
13 \( 1 - 74.4T + 3.71e5T^{2} \)
17 \( 1 - 805.T + 1.41e6T^{2} \)
19 \( 1 - 2.41e3T + 2.47e6T^{2} \)
23 \( 1 - 2.62e3T + 6.43e6T^{2} \)
29 \( 1 + 5.53e3T + 2.05e7T^{2} \)
31 \( 1 - 3.17e3T + 2.86e7T^{2} \)
37 \( 1 + 5.43e3T + 6.93e7T^{2} \)
41 \( 1 + 2.36e3T + 1.15e8T^{2} \)
43 \( 1 + 1.27e4T + 1.47e8T^{2} \)
47 \( 1 - 2.35e4T + 2.29e8T^{2} \)
53 \( 1 - 3.10e3T + 4.18e8T^{2} \)
59 \( 1 - 8.18e3T + 7.14e8T^{2} \)
61 \( 1 + 1.12e3T + 8.44e8T^{2} \)
67 \( 1 + 1.48e4T + 1.35e9T^{2} \)
71 \( 1 - 3.84e4T + 1.80e9T^{2} \)
73 \( 1 + 3.35e4T + 2.07e9T^{2} \)
79 \( 1 + 4.87e3T + 3.07e9T^{2} \)
83 \( 1 + 7.62e4T + 3.93e9T^{2} \)
89 \( 1 + 1.06e4T + 5.58e9T^{2} \)
97 \( 1 + 9.99e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10998342119866098669496456522, −9.347918589733299820571148470378, −8.499642174356985932385123308889, −7.64847902664576593546415029269, −7.08993872892201684149989237616, −5.21827397381619834752593795453, −3.92992597649393183573108612087, −3.12209390823512546719047435387, −1.13622311947857340104221538636, 0, 1.13622311947857340104221538636, 3.12209390823512546719047435387, 3.92992597649393183573108612087, 5.21827397381619834752593795453, 7.08993872892201684149989237616, 7.64847902664576593546415029269, 8.499642174356985932385123308889, 9.347918589733299820571148470378, 10.10998342119866098669496456522

Graph of the $Z$-function along the critical line