Properties

Label 2-309-1.1-c5-0-35
Degree $2$
Conductor $309$
Sign $1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.82·2-s + 9·3-s − 17.4·4-s − 16.4·5-s + 34.3·6-s + 229.·7-s − 188.·8-s + 81·9-s − 62.9·10-s + 504.·11-s − 156.·12-s − 879.·13-s + 876.·14-s − 148.·15-s − 164.·16-s − 1.09e3·17-s + 309.·18-s + 2.79e3·19-s + 286.·20-s + 2.06e3·21-s + 1.92e3·22-s + 2.91e3·23-s − 1.69e3·24-s − 2.85e3·25-s − 3.36e3·26-s + 729·27-s − 3.99e3·28-s + ⋯
L(s)  = 1  + 0.675·2-s + 0.577·3-s − 0.543·4-s − 0.294·5-s + 0.389·6-s + 1.76·7-s − 1.04·8-s + 0.333·9-s − 0.198·10-s + 1.25·11-s − 0.313·12-s − 1.44·13-s + 1.19·14-s − 0.170·15-s − 0.160·16-s − 0.916·17-s + 0.225·18-s + 1.77·19-s + 0.160·20-s + 1.02·21-s + 0.848·22-s + 1.14·23-s − 0.602·24-s − 0.913·25-s − 0.975·26-s + 0.192·27-s − 0.961·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.620756501\)
\(L(\frac12)\) \(\approx\) \(3.620756501\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
103 \( 1 + 1.06e4T \)
good2 \( 1 - 3.82T + 32T^{2} \)
5 \( 1 + 16.4T + 3.12e3T^{2} \)
7 \( 1 - 229.T + 1.68e4T^{2} \)
11 \( 1 - 504.T + 1.61e5T^{2} \)
13 \( 1 + 879.T + 3.71e5T^{2} \)
17 \( 1 + 1.09e3T + 1.41e6T^{2} \)
19 \( 1 - 2.79e3T + 2.47e6T^{2} \)
23 \( 1 - 2.91e3T + 6.43e6T^{2} \)
29 \( 1 + 4.95e3T + 2.05e7T^{2} \)
31 \( 1 - 2.90e3T + 2.86e7T^{2} \)
37 \( 1 - 1.92e3T + 6.93e7T^{2} \)
41 \( 1 - 1.86e4T + 1.15e8T^{2} \)
43 \( 1 - 1.96e4T + 1.47e8T^{2} \)
47 \( 1 + 1.01e4T + 2.29e8T^{2} \)
53 \( 1 - 1.84e4T + 4.18e8T^{2} \)
59 \( 1 + 1.58e4T + 7.14e8T^{2} \)
61 \( 1 - 2.62e4T + 8.44e8T^{2} \)
67 \( 1 - 3.76e4T + 1.35e9T^{2} \)
71 \( 1 - 4.85e4T + 1.80e9T^{2} \)
73 \( 1 - 1.37e4T + 2.07e9T^{2} \)
79 \( 1 + 2.04e4T + 3.07e9T^{2} \)
83 \( 1 + 1.22e5T + 3.93e9T^{2} \)
89 \( 1 - 6.88e4T + 5.58e9T^{2} \)
97 \( 1 + 9.33e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26293731763774611309392670039, −9.574913119944782260493671785710, −9.061890204239595178248085104962, −7.937273644384225118227426265053, −7.18412062954343213356295532469, −5.49601961378933959897961111858, −4.64215248330202177674795601342, −3.91260008790958334813893256157, −2.44746660396284800195248280589, −1.00593223922880607812731409164, 1.00593223922880607812731409164, 2.44746660396284800195248280589, 3.91260008790958334813893256157, 4.64215248330202177674795601342, 5.49601961378933959897961111858, 7.18412062954343213356295532469, 7.937273644384225118227426265053, 9.061890204239595178248085104962, 9.574913119944782260493671785710, 11.26293731763774611309392670039

Graph of the $Z$-function along the critical line