Properties

Label 2-309-1.1-c5-0-17
Degree $2$
Conductor $309$
Sign $1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.865·2-s + 9·3-s − 31.2·4-s + 26.2·5-s + 7.79·6-s − 186.·7-s − 54.7·8-s + 81·9-s + 22.7·10-s − 263.·11-s − 281.·12-s + 201.·13-s − 161.·14-s + 235.·15-s + 952.·16-s − 389.·17-s + 70.1·18-s − 1.04e3·19-s − 819.·20-s − 1.68e3·21-s − 228.·22-s + 2.48e3·23-s − 492.·24-s − 2.43e3·25-s + 174.·26-s + 729·27-s + 5.84e3·28-s + ⋯
L(s)  = 1  + 0.153·2-s + 0.577·3-s − 0.976·4-s + 0.469·5-s + 0.0883·6-s − 1.44·7-s − 0.302·8-s + 0.333·9-s + 0.0717·10-s − 0.657·11-s − 0.563·12-s + 0.330·13-s − 0.220·14-s + 0.270·15-s + 0.930·16-s − 0.326·17-s + 0.0510·18-s − 0.661·19-s − 0.458·20-s − 0.832·21-s − 0.100·22-s + 0.978·23-s − 0.174·24-s − 0.779·25-s + 0.0505·26-s + 0.192·27-s + 1.40·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.629480090\)
\(L(\frac12)\) \(\approx\) \(1.629480090\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
103 \( 1 + 1.06e4T \)
good2 \( 1 - 0.865T + 32T^{2} \)
5 \( 1 - 26.2T + 3.12e3T^{2} \)
7 \( 1 + 186.T + 1.68e4T^{2} \)
11 \( 1 + 263.T + 1.61e5T^{2} \)
13 \( 1 - 201.T + 3.71e5T^{2} \)
17 \( 1 + 389.T + 1.41e6T^{2} \)
19 \( 1 + 1.04e3T + 2.47e6T^{2} \)
23 \( 1 - 2.48e3T + 6.43e6T^{2} \)
29 \( 1 - 6.85e3T + 2.05e7T^{2} \)
31 \( 1 - 8.52e3T + 2.86e7T^{2} \)
37 \( 1 + 8.57e3T + 6.93e7T^{2} \)
41 \( 1 - 1.09e4T + 1.15e8T^{2} \)
43 \( 1 + 1.81e4T + 1.47e8T^{2} \)
47 \( 1 - 1.19e4T + 2.29e8T^{2} \)
53 \( 1 - 3.77e4T + 4.18e8T^{2} \)
59 \( 1 - 2.61e4T + 7.14e8T^{2} \)
61 \( 1 + 3.10e4T + 8.44e8T^{2} \)
67 \( 1 - 5.61e4T + 1.35e9T^{2} \)
71 \( 1 + 5.52e3T + 1.80e9T^{2} \)
73 \( 1 + 4.16e4T + 2.07e9T^{2} \)
79 \( 1 - 9.54e4T + 3.07e9T^{2} \)
83 \( 1 + 1.01e5T + 3.93e9T^{2} \)
89 \( 1 - 3.41e4T + 5.58e9T^{2} \)
97 \( 1 - 6.12e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37878521719288345829155006270, −9.922633976879095225921073585928, −8.962684691811768571448341188007, −8.305345192726640474550213317348, −6.86282156024608173501388565276, −5.92265754017472026526831580024, −4.69064517278777262284876917460, −3.53569091481277853316917117819, −2.56676930172828736647476545950, −0.66907925696886976219637000345, 0.66907925696886976219637000345, 2.56676930172828736647476545950, 3.53569091481277853316917117819, 4.69064517278777262284876917460, 5.92265754017472026526831580024, 6.86282156024608173501388565276, 8.305345192726640474550213317348, 8.962684691811768571448341188007, 9.922633976879095225921073585928, 10.37878521719288345829155006270

Graph of the $Z$-function along the critical line