Properties

Label 2-309-1.1-c5-0-15
Degree $2$
Conductor $309$
Sign $1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.47·2-s − 9·3-s − 11.9·4-s + 56.7·5-s + 40.2·6-s − 133.·7-s + 196.·8-s + 81·9-s − 254.·10-s + 134.·11-s + 107.·12-s + 925.·13-s + 598.·14-s − 511.·15-s − 496.·16-s − 1.78e3·17-s − 362.·18-s + 917.·19-s − 680.·20-s + 1.20e3·21-s − 599.·22-s − 1.35e3·23-s − 1.77e3·24-s + 99.4·25-s − 4.13e3·26-s − 729·27-s + 1.60e3·28-s + ⋯
L(s)  = 1  − 0.790·2-s − 0.577·3-s − 0.374·4-s + 1.01·5-s + 0.456·6-s − 1.03·7-s + 1.08·8-s + 0.333·9-s − 0.803·10-s + 0.333·11-s + 0.216·12-s + 1.51·13-s + 0.816·14-s − 0.586·15-s − 0.485·16-s − 1.49·17-s − 0.263·18-s + 0.583·19-s − 0.380·20-s + 0.595·21-s − 0.264·22-s − 0.532·23-s − 0.627·24-s + 0.0318·25-s − 1.20·26-s − 0.192·27-s + 0.386·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9235410926\)
\(L(\frac12)\) \(\approx\) \(0.9235410926\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
103 \( 1 - 1.06e4T \)
good2 \( 1 + 4.47T + 32T^{2} \)
5 \( 1 - 56.7T + 3.12e3T^{2} \)
7 \( 1 + 133.T + 1.68e4T^{2} \)
11 \( 1 - 134.T + 1.61e5T^{2} \)
13 \( 1 - 925.T + 3.71e5T^{2} \)
17 \( 1 + 1.78e3T + 1.41e6T^{2} \)
19 \( 1 - 917.T + 2.47e6T^{2} \)
23 \( 1 + 1.35e3T + 6.43e6T^{2} \)
29 \( 1 - 6.17e3T + 2.05e7T^{2} \)
31 \( 1 - 2.36e3T + 2.86e7T^{2} \)
37 \( 1 + 7.38e3T + 6.93e7T^{2} \)
41 \( 1 + 1.48e4T + 1.15e8T^{2} \)
43 \( 1 - 3.74e3T + 1.47e8T^{2} \)
47 \( 1 + 1.01e4T + 2.29e8T^{2} \)
53 \( 1 + 2.28e4T + 4.18e8T^{2} \)
59 \( 1 - 4.29e4T + 7.14e8T^{2} \)
61 \( 1 + 9.25e3T + 8.44e8T^{2} \)
67 \( 1 - 2.74e4T + 1.35e9T^{2} \)
71 \( 1 - 5.17e4T + 1.80e9T^{2} \)
73 \( 1 + 1.20e4T + 2.07e9T^{2} \)
79 \( 1 - 1.94e4T + 3.07e9T^{2} \)
83 \( 1 - 1.05e5T + 3.93e9T^{2} \)
89 \( 1 - 3.43e4T + 5.58e9T^{2} \)
97 \( 1 - 8.36e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.52101167314244766231889078752, −9.892872349006429476712305488323, −9.113654609203903819448358602222, −8.320562023266131327202958765131, −6.70504322773585233663234518589, −6.21329013975602786454501719838, −4.93140364799070457573938392965, −3.62962072684351979089642795711, −1.82601921638072566250003461154, −0.64164665595384212634332158541, 0.64164665595384212634332158541, 1.82601921638072566250003461154, 3.62962072684351979089642795711, 4.93140364799070457573938392965, 6.21329013975602786454501719838, 6.70504322773585233663234518589, 8.320562023266131327202958765131, 9.113654609203903819448358602222, 9.892872349006429476712305488323, 10.52101167314244766231889078752

Graph of the $Z$-function along the critical line