Properties

Label 2-309-1.1-c5-0-13
Degree $2$
Conductor $309$
Sign $1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.29·2-s + 9·3-s + 36.8·4-s + 32.2·5-s − 74.6·6-s − 139.·7-s − 40.4·8-s + 81·9-s − 267.·10-s − 301.·11-s + 331.·12-s − 965.·13-s + 1.15e3·14-s + 290.·15-s − 844.·16-s + 60.5·17-s − 672.·18-s + 1.94e3·19-s + 1.18e3·20-s − 1.25e3·21-s + 2.50e3·22-s + 484.·23-s − 363.·24-s − 2.08e3·25-s + 8.01e3·26-s + 729·27-s − 5.12e3·28-s + ⋯
L(s)  = 1  − 1.46·2-s + 0.577·3-s + 1.15·4-s + 0.577·5-s − 0.847·6-s − 1.07·7-s − 0.223·8-s + 0.333·9-s − 0.846·10-s − 0.751·11-s + 0.665·12-s − 1.58·13-s + 1.57·14-s + 0.333·15-s − 0.824·16-s + 0.0508·17-s − 0.489·18-s + 1.23·19-s + 0.664·20-s − 0.619·21-s + 1.10·22-s + 0.190·23-s − 0.128·24-s − 0.667·25-s + 2.32·26-s + 0.192·27-s − 1.23·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8266279556\)
\(L(\frac12)\) \(\approx\) \(0.8266279556\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
103 \( 1 + 1.06e4T \)
good2 \( 1 + 8.29T + 32T^{2} \)
5 \( 1 - 32.2T + 3.12e3T^{2} \)
7 \( 1 + 139.T + 1.68e4T^{2} \)
11 \( 1 + 301.T + 1.61e5T^{2} \)
13 \( 1 + 965.T + 3.71e5T^{2} \)
17 \( 1 - 60.5T + 1.41e6T^{2} \)
19 \( 1 - 1.94e3T + 2.47e6T^{2} \)
23 \( 1 - 484.T + 6.43e6T^{2} \)
29 \( 1 + 2.92e3T + 2.05e7T^{2} \)
31 \( 1 - 8.13e3T + 2.86e7T^{2} \)
37 \( 1 - 7.71e3T + 6.93e7T^{2} \)
41 \( 1 - 1.59e4T + 1.15e8T^{2} \)
43 \( 1 + 6.91e3T + 1.47e8T^{2} \)
47 \( 1 + 1.56e4T + 2.29e8T^{2} \)
53 \( 1 + 2.80e4T + 4.18e8T^{2} \)
59 \( 1 + 2.44e4T + 7.14e8T^{2} \)
61 \( 1 - 2.83e4T + 8.44e8T^{2} \)
67 \( 1 - 2.34e4T + 1.35e9T^{2} \)
71 \( 1 + 4.66e3T + 1.80e9T^{2} \)
73 \( 1 - 4.97e4T + 2.07e9T^{2} \)
79 \( 1 + 2.04e4T + 3.07e9T^{2} \)
83 \( 1 - 3.27e4T + 3.93e9T^{2} \)
89 \( 1 - 1.06e5T + 5.58e9T^{2} \)
97 \( 1 - 1.41e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23042318344127729225477352497, −9.667684493575118642447722861207, −9.375537026198262970700705849442, −7.979084782355382863745258680214, −7.43307602522182515004315672732, −6.32051595154452308450514447709, −4.87293368339510531775753748493, −3.02865867137971919900388745435, −2.12534869607693761378918157314, −0.59419021947318550645133784345, 0.59419021947318550645133784345, 2.12534869607693761378918157314, 3.02865867137971919900388745435, 4.87293368339510531775753748493, 6.32051595154452308450514447709, 7.43307602522182515004315672732, 7.979084782355382863745258680214, 9.375537026198262970700705849442, 9.667684493575118642447722861207, 10.23042318344127729225477352497

Graph of the $Z$-function along the critical line