Properties

Label 2-309-1.1-c5-0-0
Degree $2$
Conductor $309$
Sign $1$
Analytic cond. $49.5586$
Root an. cond. $7.03978$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.32·2-s + 9·3-s + 54.8·4-s − 99.7·5-s − 83.8·6-s − 63.0·7-s − 213.·8-s + 81·9-s + 930.·10-s − 579.·11-s + 493.·12-s + 47.4·13-s + 588.·14-s − 897.·15-s + 231.·16-s − 1.03e3·17-s − 755.·18-s − 2.27e3·19-s − 5.47e3·20-s − 567.·21-s + 5.40e3·22-s − 1.82e3·23-s − 1.91e3·24-s + 6.83e3·25-s − 442.·26-s + 729·27-s − 3.46e3·28-s + ⋯
L(s)  = 1  − 1.64·2-s + 0.577·3-s + 1.71·4-s − 1.78·5-s − 0.951·6-s − 0.486·7-s − 1.17·8-s + 0.333·9-s + 2.94·10-s − 1.44·11-s + 0.990·12-s + 0.0778·13-s + 0.801·14-s − 1.03·15-s + 0.226·16-s − 0.872·17-s − 0.549·18-s − 1.44·19-s − 3.06·20-s − 0.280·21-s + 2.38·22-s − 0.718·23-s − 0.680·24-s + 2.18·25-s − 0.128·26-s + 0.192·27-s − 0.834·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309\)    =    \(3 \cdot 103\)
Sign: $1$
Analytic conductor: \(49.5586\)
Root analytic conductor: \(7.03978\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 309,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.002708658860\)
\(L(\frac12)\) \(\approx\) \(0.002708658860\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
103 \( 1 + 1.06e4T \)
good2 \( 1 + 9.32T + 32T^{2} \)
5 \( 1 + 99.7T + 3.12e3T^{2} \)
7 \( 1 + 63.0T + 1.68e4T^{2} \)
11 \( 1 + 579.T + 1.61e5T^{2} \)
13 \( 1 - 47.4T + 3.71e5T^{2} \)
17 \( 1 + 1.03e3T + 1.41e6T^{2} \)
19 \( 1 + 2.27e3T + 2.47e6T^{2} \)
23 \( 1 + 1.82e3T + 6.43e6T^{2} \)
29 \( 1 + 5.48e3T + 2.05e7T^{2} \)
31 \( 1 + 2.78e3T + 2.86e7T^{2} \)
37 \( 1 - 3.87e3T + 6.93e7T^{2} \)
41 \( 1 + 7.35e3T + 1.15e8T^{2} \)
43 \( 1 + 1.16e4T + 1.47e8T^{2} \)
47 \( 1 + 1.60e4T + 2.29e8T^{2} \)
53 \( 1 + 1.07e4T + 4.18e8T^{2} \)
59 \( 1 + 1.98e4T + 7.14e8T^{2} \)
61 \( 1 + 2.37e4T + 8.44e8T^{2} \)
67 \( 1 - 2.84e4T + 1.35e9T^{2} \)
71 \( 1 - 1.21e4T + 1.80e9T^{2} \)
73 \( 1 + 3.55e4T + 2.07e9T^{2} \)
79 \( 1 - 4.34e4T + 3.07e9T^{2} \)
83 \( 1 - 4.47e4T + 3.93e9T^{2} \)
89 \( 1 + 7.75e4T + 5.58e9T^{2} \)
97 \( 1 + 8.22e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78604858126055641337962089286, −9.796471885802534811929701172780, −8.691168850426036725495156785068, −8.130454641293051514409336030680, −7.53357044725106891447075889532, −6.58813421936749202918991621342, −4.53475342805086368929800650929, −3.29514870742538927263334246258, −2.03952384575309806339482689380, −0.03378165009622883519991213483, 0.03378165009622883519991213483, 2.03952384575309806339482689380, 3.29514870742538927263334246258, 4.53475342805086368929800650929, 6.58813421936749202918991621342, 7.53357044725106891447075889532, 8.130454641293051514409336030680, 8.691168850426036725495156785068, 9.796471885802534811929701172780, 10.78604858126055641337962089286

Graph of the $Z$-function along the critical line