L(s) = 1 | + (0.707 + 0.707i)3-s + 1.00i·9-s + (1.41 + 1.41i)19-s − i·25-s + (−0.707 + 0.707i)27-s + (−1.41 + 1.41i)43-s + 49-s + 2.00i·57-s + (1.41 + 1.41i)67-s − 2i·73-s + (0.707 − 0.707i)75-s − 1.00·81-s − 2·97-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + 1.00i·9-s + (1.41 + 1.41i)19-s − i·25-s + (−0.707 + 0.707i)27-s + (−1.41 + 1.41i)43-s + 49-s + 2.00i·57-s + (1.41 + 1.41i)67-s − 2i·73-s + (0.707 − 0.707i)75-s − 1.00·81-s − 2·97-s + ⋯ |
Λ(s)=(=(3072s/2ΓC(s)L(s)(0.382−0.923i)Λ(1−s)
Λ(s)=(=(3072s/2ΓC(s)L(s)(0.382−0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
3072
= 210⋅3
|
Sign: |
0.382−0.923i
|
Analytic conductor: |
1.53312 |
Root analytic conductor: |
1.23819 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3072(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3072, ( :0), 0.382−0.923i)
|
Particular Values
L(21) |
≈ |
1.604183966 |
L(21) |
≈ |
1.604183966 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.707−0.707i)T |
good | 5 | 1+iT2 |
| 7 | 1−T2 |
| 11 | 1+iT2 |
| 13 | 1+iT2 |
| 17 | 1−T2 |
| 19 | 1+(−1.41−1.41i)T+iT2 |
| 23 | 1+T2 |
| 29 | 1−iT2 |
| 31 | 1+T2 |
| 37 | 1−iT2 |
| 41 | 1+T2 |
| 43 | 1+(1.41−1.41i)T−iT2 |
| 47 | 1−T2 |
| 53 | 1+iT2 |
| 59 | 1+iT2 |
| 61 | 1+iT2 |
| 67 | 1+(−1.41−1.41i)T+iT2 |
| 71 | 1+T2 |
| 73 | 1+2iT−T2 |
| 79 | 1+T2 |
| 83 | 1−iT2 |
| 89 | 1+T2 |
| 97 | 1+2T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.073221786252299923806390063414, −8.200111280201559902131618305349, −7.83501986510574242241607440647, −6.87203775467530392545073529481, −5.84708554138472942478538196571, −5.12709580101326776447169180230, −4.24377471230616338001811570280, −3.48088156479517302531132840367, −2.68939251459845200889645947595, −1.53350743937574894770540309698,
0.994218263864976680754827617339, 2.15055032143309626007799534134, 3.06496364151215791319726696955, 3.77662218771910359513202118686, 4.98295731119253467662722568788, 5.70008998277433213533701522031, 6.89726913440852268164912887252, 7.10191604597371451993263308553, 8.001015597769676503500658238449, 8.723918046626110272180542179297