Properties

Label 2-3072-1.1-c1-0-52
Degree $2$
Conductor $3072$
Sign $-1$
Analytic cond. $24.5300$
Root an. cond. $4.95278$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2.49·5-s − 0.917·7-s + 9-s − 3.69·11-s + 5.81·13-s − 2.49·15-s − 0.867·17-s − 6.52·19-s + 0.917·21-s − 4·23-s + 1.23·25-s − 27-s − 7.72·29-s + 2.14·31-s + 3.69·33-s − 2.29·35-s − 2.47·37-s − 5.81·39-s − 9.58·41-s + 9.58·43-s + 2.49·45-s + 1.65·47-s − 6.15·49-s + 0.867·51-s + 3.39·53-s − 9.22·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.11·5-s − 0.346·7-s + 0.333·9-s − 1.11·11-s + 1.61·13-s − 0.644·15-s − 0.210·17-s − 1.49·19-s + 0.200·21-s − 0.834·23-s + 0.246·25-s − 0.192·27-s − 1.43·29-s + 0.385·31-s + 0.643·33-s − 0.387·35-s − 0.406·37-s − 0.930·39-s − 1.49·41-s + 1.46·43-s + 0.372·45-s + 0.241·47-s − 0.879·49-s + 0.121·51-s + 0.466·53-s − 1.24·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3072\)    =    \(2^{10} \cdot 3\)
Sign: $-1$
Analytic conductor: \(24.5300\)
Root analytic conductor: \(4.95278\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3072,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
good5 \( 1 - 2.49T + 5T^{2} \)
7 \( 1 + 0.917T + 7T^{2} \)
11 \( 1 + 3.69T + 11T^{2} \)
13 \( 1 - 5.81T + 13T^{2} \)
17 \( 1 + 0.867T + 17T^{2} \)
19 \( 1 + 6.52T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 + 7.72T + 29T^{2} \)
31 \( 1 - 2.14T + 31T^{2} \)
37 \( 1 + 2.47T + 37T^{2} \)
41 \( 1 + 9.58T + 41T^{2} \)
43 \( 1 - 9.58T + 43T^{2} \)
47 \( 1 - 1.65T + 47T^{2} \)
53 \( 1 - 3.39T + 53T^{2} \)
59 \( 1 - 12.7T + 59T^{2} \)
61 \( 1 - 0.0231T + 61T^{2} \)
67 \( 1 + 5.32T + 67T^{2} \)
71 \( 1 + 11.8T + 71T^{2} \)
73 \( 1 + 15.2T + 73T^{2} \)
79 \( 1 + 8.40T + 79T^{2} \)
83 \( 1 + 1.96T + 83T^{2} \)
89 \( 1 - 2.79T + 89T^{2} \)
97 \( 1 + 2.26T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.508945995076530931601472926316, −7.51653769218519841782194391158, −6.56783122654385938375026286339, −5.91385954654644943504164181091, −5.61743476470865210520469075253, −4.48452698183479001738165444645, −3.60421932088888417508955849314, −2.38146626974936901309367501913, −1.58089658923940818515925108230, 0, 1.58089658923940818515925108230, 2.38146626974936901309367501913, 3.60421932088888417508955849314, 4.48452698183479001738165444645, 5.61743476470865210520469075253, 5.91385954654644943504164181091, 6.56783122654385938375026286339, 7.51653769218519841782194391158, 8.508945995076530931601472926316

Graph of the $Z$-function along the critical line