| L(s) = 1 | − 3-s − 1.03·5-s − 2.44·7-s + 9-s − 5.46·11-s + 4.24·13-s + 1.03·15-s + 3.46·17-s − 0.535·19-s + 2.44·21-s + 2.82·23-s − 3.92·25-s − 27-s − 5.93·29-s − 7.34·31-s + 5.46·33-s + 2.53·35-s − 9.14·37-s − 4.24·39-s + 11.4·41-s − 3.46·43-s − 1.03·45-s − 2.82·47-s − 1.00·49-s − 3.46·51-s − 9.52·53-s + 5.65·55-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 0.462·5-s − 0.925·7-s + 0.333·9-s − 1.64·11-s + 1.17·13-s + 0.267·15-s + 0.840·17-s − 0.122·19-s + 0.534·21-s + 0.589·23-s − 0.785·25-s − 0.192·27-s − 1.10·29-s − 1.31·31-s + 0.951·33-s + 0.428·35-s − 1.50·37-s − 0.679·39-s + 1.79·41-s − 0.528·43-s − 0.154·45-s − 0.412·47-s − 0.142·49-s − 0.485·51-s − 1.30·53-s + 0.762·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7739645003\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7739645003\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| good | 5 | \( 1 + 1.03T + 5T^{2} \) |
| 7 | \( 1 + 2.44T + 7T^{2} \) |
| 11 | \( 1 + 5.46T + 11T^{2} \) |
| 13 | \( 1 - 4.24T + 13T^{2} \) |
| 17 | \( 1 - 3.46T + 17T^{2} \) |
| 19 | \( 1 + 0.535T + 19T^{2} \) |
| 23 | \( 1 - 2.82T + 23T^{2} \) |
| 29 | \( 1 + 5.93T + 29T^{2} \) |
| 31 | \( 1 + 7.34T + 31T^{2} \) |
| 37 | \( 1 + 9.14T + 37T^{2} \) |
| 41 | \( 1 - 11.4T + 41T^{2} \) |
| 43 | \( 1 + 3.46T + 43T^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 + 9.52T + 53T^{2} \) |
| 59 | \( 1 - 13.8T + 59T^{2} \) |
| 61 | \( 1 - 9.14T + 61T^{2} \) |
| 67 | \( 1 + 1.07T + 67T^{2} \) |
| 71 | \( 1 - 16.2T + 71T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 - 2.44T + 79T^{2} \) |
| 83 | \( 1 - 1.46T + 83T^{2} \) |
| 89 | \( 1 - 8.92T + 89T^{2} \) |
| 97 | \( 1 - 14.9T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.644311566857789127590609143953, −7.83560128256007162037981366816, −7.27864214208504689808858293980, −6.36164563341479417386512054156, −5.60621945661582554224476266038, −5.09304690608284934866820594546, −3.76130754802192282995420883427, −3.34324245914467889743713841770, −2.04029874702903851785760421722, −0.52912999734955054211014389084,
0.52912999734955054211014389084, 2.04029874702903851785760421722, 3.34324245914467889743713841770, 3.76130754802192282995420883427, 5.09304690608284934866820594546, 5.60621945661582554224476266038, 6.36164563341479417386512054156, 7.27864214208504689808858293980, 7.83560128256007162037981366816, 8.644311566857789127590609143953