| L(s) = 1 | + 3-s + 2.47·5-s − 2.55·7-s + 9-s − 0.669·11-s + 4.08·13-s + 2.47·15-s + 6.44·17-s − 6.44·19-s − 2.55·21-s + 2.82·23-s + 1.11·25-s + 27-s + 4.35·29-s + 6.55·31-s − 0.669·33-s − 6.32·35-s − 3.85·37-s + 4.08·39-s + 0.788·41-s + 0.550·43-s + 2.47·45-s − 2.82·47-s − 0.458·49-s + 6.44·51-s + 3.64·53-s − 1.65·55-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1.10·5-s − 0.966·7-s + 0.333·9-s − 0.201·11-s + 1.13·13-s + 0.638·15-s + 1.56·17-s − 1.47·19-s − 0.558·21-s + 0.589·23-s + 0.223·25-s + 0.192·27-s + 0.808·29-s + 1.17·31-s − 0.116·33-s − 1.06·35-s − 0.634·37-s + 0.653·39-s + 0.123·41-s + 0.0840·43-s + 0.368·45-s − 0.412·47-s − 0.0654·49-s + 0.902·51-s + 0.500·53-s − 0.223·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3072 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.793507120\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.793507120\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| good | 5 | \( 1 - 2.47T + 5T^{2} \) |
| 7 | \( 1 + 2.55T + 7T^{2} \) |
| 11 | \( 1 + 0.669T + 11T^{2} \) |
| 13 | \( 1 - 4.08T + 13T^{2} \) |
| 17 | \( 1 - 6.44T + 17T^{2} \) |
| 19 | \( 1 + 6.44T + 19T^{2} \) |
| 23 | \( 1 - 2.82T + 23T^{2} \) |
| 29 | \( 1 - 4.35T + 29T^{2} \) |
| 31 | \( 1 - 6.55T + 31T^{2} \) |
| 37 | \( 1 + 3.85T + 37T^{2} \) |
| 41 | \( 1 - 0.788T + 41T^{2} \) |
| 43 | \( 1 - 0.550T + 43T^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 - 3.64T + 53T^{2} \) |
| 59 | \( 1 - 5.65T + 59T^{2} \) |
| 61 | \( 1 - 6.20T + 61T^{2} \) |
| 67 | \( 1 - 2.99T + 67T^{2} \) |
| 71 | \( 1 - 5.11T + 71T^{2} \) |
| 73 | \( 1 + 14.7T + 73T^{2} \) |
| 79 | \( 1 - 6.31T + 79T^{2} \) |
| 83 | \( 1 - 0.907T + 83T^{2} \) |
| 89 | \( 1 + 6.31T + 89T^{2} \) |
| 97 | \( 1 - 12.6T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.678792501364549177668556520438, −8.204702610749064292703209251654, −7.09870114814523315679260353368, −6.30504788559228919638741647124, −5.91536354499007353720222245600, −4.88624194717432860137728190886, −3.75615190083247744066794255490, −3.05648103892727925533859993977, −2.15814823050182196297447771147, −1.03787889492982455688881607384,
1.03787889492982455688881607384, 2.15814823050182196297447771147, 3.05648103892727925533859993977, 3.75615190083247744066794255490, 4.88624194717432860137728190886, 5.91536354499007353720222245600, 6.30504788559228919638741647124, 7.09870114814523315679260353368, 8.204702610749064292703209251654, 8.678792501364549177668556520438