Properties

Label 2-3060-5.4-c1-0-22
Degree $2$
Conductor $3060$
Sign $0.894 - 0.447i$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + 2i)5-s − 3i·7-s + 3·11-s + 6i·13-s i·17-s + 7·19-s − 8i·23-s + (−3 + 4i)25-s − 29-s − 4·31-s + (6 − 3i)35-s + 7i·37-s + 9·41-s − 4i·43-s + 3i·47-s + ⋯
L(s)  = 1  + (0.447 + 0.894i)5-s − 1.13i·7-s + 0.904·11-s + 1.66i·13-s − 0.242i·17-s + 1.60·19-s − 1.66i·23-s + (−0.600 + 0.800i)25-s − 0.185·29-s − 0.718·31-s + (1.01 − 0.507i)35-s + 1.15i·37-s + 1.40·41-s − 0.609i·43-s + 0.437i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3060} (2449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.232340953\)
\(L(\frac12)\) \(\approx\) \(2.232340953\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-1 - 2i)T \)
17 \( 1 + iT \)
good7 \( 1 + 3iT - 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 - 6iT - 13T^{2} \)
19 \( 1 - 7T + 19T^{2} \)
23 \( 1 + 8iT - 23T^{2} \)
29 \( 1 + T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - 7iT - 37T^{2} \)
41 \( 1 - 9T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 - 3iT - 47T^{2} \)
53 \( 1 - 3iT - 53T^{2} \)
59 \( 1 + 14T + 59T^{2} \)
61 \( 1 - 12T + 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 7iT - 73T^{2} \)
79 \( 1 - 16T + 79T^{2} \)
83 \( 1 + 8iT - 83T^{2} \)
89 \( 1 + 14T + 89T^{2} \)
97 \( 1 + 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.030190634323177521994056444904, −7.79381064373629691518494197359, −7.06850148904837871281589222110, −6.70418243522148918370456885647, −5.94752631257776329257979988743, −4.72553405300048899068224475454, −4.03762427998746288446853130684, −3.22466986924030648047240606086, −2.10757592858891139084635845783, −1.04604581507608697921528056780, 0.880760557599741207154290674108, 1.87588625849602280214769046866, 3.02193101153615216526020339387, 3.84241719484363781823535948672, 5.12534965063954377154707748427, 5.58626587398920141093482867447, 6.01052912532045277840973151936, 7.34765532044979722471767244381, 7.947440577477874407048201272273, 8.768017286403247775874230621463

Graph of the $Z$-function along the critical line