L(s) = 1 | + (−2.23 + 0.0844i)5-s + (2.49 + 2.49i)7-s − 1.52i·11-s + (−2.35 + 2.35i)13-s + (−0.707 + 0.707i)17-s − 7.97i·19-s + (−4.11 − 4.11i)23-s + (4.98 − 0.377i)25-s − 2.94·29-s + 0.221·31-s + (−5.79 − 5.37i)35-s + (0.703 + 0.703i)37-s − 1.32i·41-s + (−0.264 + 0.264i)43-s + (−1.52 + 1.52i)47-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.0377i)5-s + (0.944 + 0.944i)7-s − 0.459i·11-s + (−0.653 + 0.653i)13-s + (−0.171 + 0.171i)17-s − 1.82i·19-s + (−0.857 − 0.857i)23-s + (0.997 − 0.0754i)25-s − 0.546·29-s + 0.0397·31-s + (−0.979 − 0.908i)35-s + (0.115 + 0.115i)37-s − 0.206i·41-s + (−0.0403 + 0.0403i)43-s + (−0.222 + 0.222i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.409 + 0.912i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.409 + 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.128016676\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.128016676\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.23 - 0.0844i)T \) |
| 17 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 + (-2.49 - 2.49i)T + 7iT^{2} \) |
| 11 | \( 1 + 1.52iT - 11T^{2} \) |
| 13 | \( 1 + (2.35 - 2.35i)T - 13iT^{2} \) |
| 19 | \( 1 + 7.97iT - 19T^{2} \) |
| 23 | \( 1 + (4.11 + 4.11i)T + 23iT^{2} \) |
| 29 | \( 1 + 2.94T + 29T^{2} \) |
| 31 | \( 1 - 0.221T + 31T^{2} \) |
| 37 | \( 1 + (-0.703 - 0.703i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.32iT - 41T^{2} \) |
| 43 | \( 1 + (0.264 - 0.264i)T - 43iT^{2} \) |
| 47 | \( 1 + (1.52 - 1.52i)T - 47iT^{2} \) |
| 53 | \( 1 + (4.36 + 4.36i)T + 53iT^{2} \) |
| 59 | \( 1 - 11.7T + 59T^{2} \) |
| 61 | \( 1 - 14.2T + 61T^{2} \) |
| 67 | \( 1 + (-6.52 - 6.52i)T + 67iT^{2} \) |
| 71 | \( 1 + 9.43iT - 71T^{2} \) |
| 73 | \( 1 + (2.07 - 2.07i)T - 73iT^{2} \) |
| 79 | \( 1 + 11.1iT - 79T^{2} \) |
| 83 | \( 1 + (6.69 + 6.69i)T + 83iT^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 + (-0.913 - 0.913i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.604411361682375400511513408628, −7.935941925585697861411473362815, −7.11804949984360916439157663319, −6.42902603443591807631859933281, −5.30002337197671899009765730411, −4.72588272264824180165320455616, −3.96358994989271974480449876728, −2.78451215346736797380570099869, −2.02161402763749878793112646460, −0.40956969701068679014085943956,
1.03518888598312020498272354515, 2.15251105512429993879743249657, 3.58480865712676160302478995653, 4.03076125244280514105509274552, 4.91332943486607880481717831680, 5.64731619127523596582396899866, 6.84714739290491101433968759907, 7.61778230812147419213135625306, 7.87341387006026656435739316263, 8.560116634059398900340364365030