L(s) = 1 | + (1.30 + 1.81i)5-s + (−3.12 − 3.12i)7-s + 5.89i·11-s + (4.65 − 4.65i)13-s + (−0.707 + 0.707i)17-s − 1.39i·19-s + (6.38 + 6.38i)23-s + (−1.58 + 4.74i)25-s − 3.28·29-s − 3.63·31-s + (1.58 − 9.74i)35-s + (−0.354 − 0.354i)37-s − 5.17i·41-s + (5.26 − 5.26i)43-s + (−7.36 + 7.36i)47-s + ⋯ |
L(s) = 1 | + (0.584 + 0.811i)5-s + (−1.17 − 1.17i)7-s + 1.77i·11-s + (1.29 − 1.29i)13-s + (−0.171 + 0.171i)17-s − 0.320i·19-s + (1.33 + 1.33i)23-s + (−0.316 + 0.948i)25-s − 0.609·29-s − 0.652·31-s + (0.267 − 1.64i)35-s + (−0.0582 − 0.0582i)37-s − 0.807i·41-s + (0.802 − 0.802i)43-s + (−1.07 + 1.07i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.533 - 0.845i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.533 - 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.716105446\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.716105446\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.30 - 1.81i)T \) |
| 17 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 + (3.12 + 3.12i)T + 7iT^{2} \) |
| 11 | \( 1 - 5.89iT - 11T^{2} \) |
| 13 | \( 1 + (-4.65 + 4.65i)T - 13iT^{2} \) |
| 19 | \( 1 + 1.39iT - 19T^{2} \) |
| 23 | \( 1 + (-6.38 - 6.38i)T + 23iT^{2} \) |
| 29 | \( 1 + 3.28T + 29T^{2} \) |
| 31 | \( 1 + 3.63T + 31T^{2} \) |
| 37 | \( 1 + (0.354 + 0.354i)T + 37iT^{2} \) |
| 41 | \( 1 + 5.17iT - 41T^{2} \) |
| 43 | \( 1 + (-5.26 + 5.26i)T - 43iT^{2} \) |
| 47 | \( 1 + (7.36 - 7.36i)T - 47iT^{2} \) |
| 53 | \( 1 + (3.59 + 3.59i)T + 53iT^{2} \) |
| 59 | \( 1 - 0.694T + 59T^{2} \) |
| 61 | \( 1 - 11.0T + 61T^{2} \) |
| 67 | \( 1 + (-10.7 - 10.7i)T + 67iT^{2} \) |
| 71 | \( 1 - 9.55iT - 71T^{2} \) |
| 73 | \( 1 + (-4.25 + 4.25i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.03iT - 79T^{2} \) |
| 83 | \( 1 + (-1.38 - 1.38i)T + 83iT^{2} \) |
| 89 | \( 1 - 9.39T + 89T^{2} \) |
| 97 | \( 1 + (-10.1 - 10.1i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.104480790173188569228778158464, −7.80814589403170477772392382975, −7.12470117535421663597051065822, −6.81162051562051751065547940963, −5.87775206157745348125879535358, −5.09206872334232778267043630113, −3.76655448369313105248652650092, −3.44049015732816223914600037720, −2.29365704631660621425265634512, −1.06667707441280092479086506589,
0.62119089319173845776317788449, 1.88637335256557597715308861172, 2.97435364538377806154403034267, 3.69437725880528093701689177448, 4.85444050583409543979169515185, 5.74449941569441532844381970649, 6.23530131783010935256505729601, 6.69679008954985690683853626183, 8.275019352318454811493715742738, 8.730736931131002535196663694950