L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s + (−0.923 − 0.382i)5-s + (−0.923 − 0.382i)8-s − i·10-s + (−1.30 + 1.30i)13-s − i·16-s − i·17-s + (0.923 − 0.382i)20-s + (0.707 + 0.707i)25-s + (−1.70 − 0.707i)26-s + (−1.08 − 0.216i)29-s + (0.923 − 0.382i)32-s + (0.923 − 0.382i)34-s + (−1.08 − 1.63i)37-s + ⋯ |
L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s + (−0.923 − 0.382i)5-s + (−0.923 − 0.382i)8-s − i·10-s + (−1.30 + 1.30i)13-s − i·16-s − i·17-s + (0.923 − 0.382i)20-s + (0.707 + 0.707i)25-s + (−1.70 − 0.707i)26-s + (−1.08 − 0.216i)29-s + (0.923 − 0.382i)32-s + (0.923 − 0.382i)34-s + (−1.08 − 1.63i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0705 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0705 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1977020001\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1977020001\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 - 0.923i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.923 + 0.382i)T \) |
| 17 | \( 1 + iT \) |
good | 7 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 11 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 13 | \( 1 + (1.30 - 1.30i)T - iT^{2} \) |
| 19 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 29 | \( 1 + (1.08 + 0.216i)T + (0.923 + 0.382i)T^{2} \) |
| 31 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 37 | \( 1 + (1.08 + 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 41 | \( 1 + (0.324 + 1.63i)T + (-0.923 + 0.382i)T^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (0.216 + 1.08i)T + (-0.923 + 0.382i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 73 | \( 1 + (0.382 - 1.92i)T + (-0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (-0.541 - 0.541i)T + iT^{2} \) |
| 97 | \( 1 + (1.08 + 0.216i)T + (0.923 + 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.630236859992749269971755020124, −7.73467127881093839154683935200, −7.16978902700648625670061269145, −6.75294003413688011174961135833, −5.44910516932755168525901363517, −4.94568963162904303718705739271, −4.15345656943169994746886005422, −3.46269810102443951897547254292, −2.18292402519365948740609674941, −0.10445967130165771643345075849,
1.54568439434762437266663169695, 2.87408361486546142778320323868, 3.29088067713319102404187555382, 4.33614030454744644763886375685, 4.98439411021608231401862842842, 5.86325299220567445308313160777, 6.78717993459072568101819142504, 7.79397972681141014073616708526, 8.235334469328090609838756387053, 9.215971545516241031542366678249