L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s − 5-s + (−0.923 − 0.382i)8-s + (−0.382 − 0.923i)10-s + (1.30 − 1.30i)13-s − i·16-s − i·17-s + (0.707 − 0.707i)20-s + 25-s + (1.70 + 0.707i)26-s + (1.08 + 0.216i)29-s + (0.923 − 0.382i)32-s + (0.923 − 0.382i)34-s + (1.08 + 1.63i)37-s + ⋯ |
L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s − 5-s + (−0.923 − 0.382i)8-s + (−0.382 − 0.923i)10-s + (1.30 − 1.30i)13-s − i·16-s − i·17-s + (0.707 − 0.707i)20-s + 25-s + (1.70 + 0.707i)26-s + (1.08 + 0.216i)29-s + (0.923 − 0.382i)32-s + (0.923 − 0.382i)34-s + (1.08 + 1.63i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.694 - 0.719i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.694 - 0.719i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.168616411\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.168616411\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 - 0.923i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 17 | \( 1 + iT \) |
good | 7 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 11 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 13 | \( 1 + (-1.30 + 1.30i)T - iT^{2} \) |
| 19 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 29 | \( 1 + (-1.08 - 0.216i)T + (0.923 + 0.382i)T^{2} \) |
| 31 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 37 | \( 1 + (-1.08 - 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 41 | \( 1 + (-0.324 - 1.63i)T + (-0.923 + 0.382i)T^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (0.216 + 1.08i)T + (-0.923 + 0.382i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 73 | \( 1 + (-0.382 + 1.92i)T + (-0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (0.541 + 0.541i)T + iT^{2} \) |
| 97 | \( 1 + (-1.08 - 0.216i)T + (0.923 + 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.617349134362157289865675365528, −8.035328961504202028158045479545, −7.69165087996865487048207222738, −6.57966531639629261471930604021, −6.17687071799353634632043838104, −4.98237789173602987869779586087, −4.59870848283750236770241111094, −3.35165022392794437876663815213, −3.08422171470270937075315832408, −0.837164186519551019568903931852,
1.08609718053162245066892200009, 2.20127463200836206351333429155, 3.35665107049196180203108917192, 4.09951404734899739134137478202, 4.44954819806591707125104958441, 5.72305260447145010020301784693, 6.36056340288467848151718159879, 7.30940152841099940603653157950, 8.366115008663031338377113637329, 8.776633408868741357684798380966