L(s) = 1 | − 2-s + 4-s + (−0.707 + 0.707i)5-s − 8-s + (0.707 − 0.707i)10-s + 16-s + (0.707 + 0.707i)17-s + (−0.707 + 0.707i)20-s − 1.00i·25-s + (0.707 − 0.292i)29-s − 32-s + (−0.707 − 0.707i)34-s + (−0.707 + 1.70i)37-s + (0.707 − 0.707i)40-s + (0.292 − 0.707i)41-s + ⋯ |
L(s) = 1 | − 2-s + 4-s + (−0.707 + 0.707i)5-s − 8-s + (0.707 − 0.707i)10-s + 16-s + (0.707 + 0.707i)17-s + (−0.707 + 0.707i)20-s − 1.00i·25-s + (0.707 − 0.292i)29-s − 32-s + (−0.707 − 0.707i)34-s + (−0.707 + 1.70i)37-s + (0.707 − 0.707i)40-s + (0.292 − 0.707i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.137 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.137 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6104963332\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6104963332\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (-0.707 - 0.707i)T \) |
good | 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.707 + 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (0.707 - 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - 1.41iT - T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (1.70 + 0.707i)T + (0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.952963449811239030226959656218, −8.202084821308175164878814869022, −7.76928023786431637668167539559, −6.91140625681770110567899236093, −6.37289848549930400426223933687, −5.45831184823570248006052428398, −4.18828776709178147626351112332, −3.28510394514524721693767955953, −2.51774396371428459030250779395, −1.21640990348348868459427235847,
0.58787303426635366882585143981, 1.77195632754358503412352877187, 2.99537397880956825424067657657, 3.84227292391476725361307401179, 4.99381291142054941859876183487, 5.68653447243802228914580749557, 6.80983866529749061317646063580, 7.34089853070963044855837901159, 8.193309507465732105272925212198, 8.557636330814814290427668003250