Properties

Label 2-3060-1.1-c1-0-18
Degree $2$
Conductor $3060$
Sign $-1$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3.05·7-s + 0.259·11-s + 2.79·13-s − 17-s + 6.10·19-s − 7.57·23-s + 25-s + 2.51·29-s + 10.3·31-s + 3.05·35-s − 8.10·37-s + 0.102·41-s − 1.20·43-s − 3.31·47-s + 2.31·49-s − 12.6·53-s − 0.259·55-s + 3.48·59-s − 14.2·61-s − 2.79·65-s − 4.68·67-s − 3.74·71-s + 10.7·73-s − 0.791·77-s − 3.74·79-s + 11.8·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.15·7-s + 0.0782·11-s + 0.774·13-s − 0.242·17-s + 1.40·19-s − 1.57·23-s + 0.200·25-s + 0.467·29-s + 1.86·31-s + 0.515·35-s − 1.33·37-s + 0.0160·41-s − 0.184·43-s − 0.482·47-s + 0.330·49-s − 1.73·53-s − 0.0349·55-s + 0.453·59-s − 1.81·61-s − 0.346·65-s − 0.572·67-s − 0.443·71-s + 1.25·73-s − 0.0902·77-s − 0.420·79-s + 1.29·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + 3.05T + 7T^{2} \)
11 \( 1 - 0.259T + 11T^{2} \)
13 \( 1 - 2.79T + 13T^{2} \)
19 \( 1 - 6.10T + 19T^{2} \)
23 \( 1 + 7.57T + 23T^{2} \)
29 \( 1 - 2.51T + 29T^{2} \)
31 \( 1 - 10.3T + 31T^{2} \)
37 \( 1 + 8.10T + 37T^{2} \)
41 \( 1 - 0.102T + 41T^{2} \)
43 \( 1 + 1.20T + 43T^{2} \)
47 \( 1 + 3.31T + 47T^{2} \)
53 \( 1 + 12.6T + 53T^{2} \)
59 \( 1 - 3.48T + 59T^{2} \)
61 \( 1 + 14.2T + 61T^{2} \)
67 \( 1 + 4.68T + 67T^{2} \)
71 \( 1 + 3.74T + 71T^{2} \)
73 \( 1 - 10.7T + 73T^{2} \)
79 \( 1 + 3.74T + 79T^{2} \)
83 \( 1 - 11.8T + 83T^{2} \)
89 \( 1 + 16.8T + 89T^{2} \)
97 \( 1 - 3.03T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.246748384358894170722282336624, −7.70563275289504926223995268910, −6.60567558247877298519916852416, −6.30884778587964943900503051884, −5.29308555127652071847804786432, −4.29650825232462895413752411555, −3.46871737111990655977667617866, −2.84132639512746817217724651946, −1.37809612212633157396513299839, 0, 1.37809612212633157396513299839, 2.84132639512746817217724651946, 3.46871737111990655977667617866, 4.29650825232462895413752411555, 5.29308555127652071847804786432, 6.30884778587964943900503051884, 6.60567558247877298519916852416, 7.70563275289504926223995268910, 8.246748384358894170722282336624

Graph of the $Z$-function along the critical line