L(s) = 1 | − 2-s + 4-s + 2·5-s − 8-s − 2·10-s + 4·11-s − 2·13-s + 16-s − 17-s + 4·19-s + 2·20-s − 4·22-s − 25-s + 2·26-s + 10·29-s + 8·31-s − 32-s + 34-s − 2·37-s − 4·38-s − 2·40-s − 10·41-s + 12·43-s + 4·44-s − 7·49-s + 50-s − 2·52-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s − 0.632·10-s + 1.20·11-s − 0.554·13-s + 1/4·16-s − 0.242·17-s + 0.917·19-s + 0.447·20-s − 0.852·22-s − 1/5·25-s + 0.392·26-s + 1.85·29-s + 1.43·31-s − 0.176·32-s + 0.171·34-s − 0.328·37-s − 0.648·38-s − 0.316·40-s − 1.56·41-s + 1.82·43-s + 0.603·44-s − 49-s + 0.141·50-s − 0.277·52-s + ⋯ |
Λ(s)=(=(306s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(306s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.147174036 |
L(21) |
≈ |
1.147174036 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 17 | 1+T |
good | 5 | 1−2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+2T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+pT2 |
| 29 | 1−10T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+10T+pT2 |
| 43 | 1−12T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.73531253806048906399243423876, −10.52566566553203306448675052964, −9.723242141956922614700830245165, −9.104444876573252449353403617805, −8.000937863938982294341146593643, −6.79533660929922109224513153399, −6.05886413503827459123865903257, −4.66119827871442481374467622682, −2.92323665285260202872977027719, −1.43438626728056627432143840048,
1.43438626728056627432143840048, 2.92323665285260202872977027719, 4.66119827871442481374467622682, 6.05886413503827459123865903257, 6.79533660929922109224513153399, 8.000937863938982294341146593643, 9.104444876573252449353403617805, 9.723242141956922614700830245165, 10.52566566553203306448675052964, 11.73531253806048906399243423876