Properties

Label 2-30400-1.1-c1-0-13
Degree $2$
Conductor $30400$
Sign $1$
Analytic cond. $242.745$
Root an. cond. $15.5802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4·7-s + 9-s − 4·11-s − 6·17-s − 19-s − 8·21-s + 8·23-s + 4·27-s + 6·29-s + 8·31-s + 8·33-s − 8·37-s − 2·41-s + 12·47-s + 9·49-s + 12·51-s + 4·53-s + 2·57-s + 8·59-s + 14·61-s + 4·63-s + 2·67-s − 16·69-s + 8·71-s + 2·73-s − 16·77-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.51·7-s + 1/3·9-s − 1.20·11-s − 1.45·17-s − 0.229·19-s − 1.74·21-s + 1.66·23-s + 0.769·27-s + 1.11·29-s + 1.43·31-s + 1.39·33-s − 1.31·37-s − 0.312·41-s + 1.75·47-s + 9/7·49-s + 1.68·51-s + 0.549·53-s + 0.264·57-s + 1.04·59-s + 1.79·61-s + 0.503·63-s + 0.244·67-s − 1.92·69-s + 0.949·71-s + 0.234·73-s − 1.82·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30400\)    =    \(2^{6} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(242.745\)
Root analytic conductor: \(15.5802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 30400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.496748140\)
\(L(\frac12)\) \(\approx\) \(1.496748140\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.22934966826715, −14.68045802889406, −13.96447002558351, −13.56890889298405, −12.93244899318707, −12.37143314868904, −11.77345460047309, −11.31605365617444, −10.95687275482365, −10.45796792803621, −10.09117215905124, −8.931132832020347, −8.517541601271346, −8.184792186392194, −7.221882457255229, −6.880326802719049, −6.206816251676718, −5.325260101087849, −5.100107969235846, −4.671802436180239, −3.951134489846551, −2.682373865780311, −2.354492561250410, −1.234865372918411, −0.5558085086232145, 0.5558085086232145, 1.234865372918411, 2.354492561250410, 2.682373865780311, 3.951134489846551, 4.671802436180239, 5.100107969235846, 5.325260101087849, 6.206816251676718, 6.880326802719049, 7.221882457255229, 8.184792186392194, 8.517541601271346, 8.931132832020347, 10.09117215905124, 10.45796792803621, 10.95687275482365, 11.31605365617444, 11.77345460047309, 12.37143314868904, 12.93244899318707, 13.56890889298405, 13.96447002558351, 14.68045802889406, 15.22934966826715

Graph of the $Z$-function along the critical line