L(s) = 1 | + (0.766 − 0.642i)5-s + (0.766 − 1.32i)7-s + (−0.939 + 0.342i)9-s + (−0.939 − 1.62i)11-s + (−0.173 + 0.984i)13-s + (0.939 + 0.342i)19-s + (−0.266 − 0.223i)23-s + (0.173 − 0.984i)25-s + (−0.266 − 1.50i)35-s + 0.347·37-s + (−0.326 − 1.85i)41-s + (−0.5 + 0.866i)45-s + (−0.939 + 0.342i)47-s + (−0.673 − 1.16i)49-s + (1.17 + 0.984i)53-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)5-s + (0.766 − 1.32i)7-s + (−0.939 + 0.342i)9-s + (−0.939 − 1.62i)11-s + (−0.173 + 0.984i)13-s + (0.939 + 0.342i)19-s + (−0.266 − 0.223i)23-s + (0.173 − 0.984i)25-s + (−0.266 − 1.50i)35-s + 0.347·37-s + (−0.326 − 1.85i)41-s + (−0.5 + 0.866i)45-s + (−0.939 + 0.342i)47-s + (−0.673 − 1.16i)49-s + (1.17 + 0.984i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0389 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0389 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.283576315\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.283576315\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.766 + 0.642i)T \) |
| 19 | \( 1 + (-0.939 - 0.342i)T \) |
good | 3 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 7 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (0.266 + 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 0.347T + T^{2} \) |
| 41 | \( 1 + (0.326 + 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 53 | \( 1 + (-1.17 - 0.984i)T + (0.173 + 0.984i)T^{2} \) |
| 59 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 79 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.0603 + 0.342i)T + (-0.939 - 0.342i)T^{2} \) |
| 97 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.634274994326864181555531677541, −8.040372957764707799912439155570, −7.38301311434810973425863949403, −6.28525436236880085429473393517, −5.55051530904007454597745996651, −4.99292076794807458579569145435, −4.05763911789926881279356050319, −3.03468110327645499546955445172, −1.93927786235634076111140753869, −0.77383324126801386941563652194,
1.79108073477511873239768111000, 2.59857289482275635214955875936, 3.11933602333262775517039295237, 4.79494576040320461209077361086, 5.33881415191275298543205370536, 5.85457488962895464714455699010, 6.81334860056388656915593088441, 7.72005411528345613503314620570, 8.246816976926065541630586078055, 9.197674659148863189845754087911