L(s) = 1 | + (0.766 − 0.642i)5-s + (0.766 − 1.32i)7-s + (−0.939 + 0.342i)9-s + (−0.939 − 1.62i)11-s + (−0.173 + 0.984i)13-s + (0.939 + 0.342i)19-s + (−0.266 − 0.223i)23-s + (0.173 − 0.984i)25-s + (−0.266 − 1.50i)35-s + 0.347·37-s + (−0.326 − 1.85i)41-s + (−0.5 + 0.866i)45-s + (−0.939 + 0.342i)47-s + (−0.673 − 1.16i)49-s + (1.17 + 0.984i)53-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)5-s + (0.766 − 1.32i)7-s + (−0.939 + 0.342i)9-s + (−0.939 − 1.62i)11-s + (−0.173 + 0.984i)13-s + (0.939 + 0.342i)19-s + (−0.266 − 0.223i)23-s + (0.173 − 0.984i)25-s + (−0.266 − 1.50i)35-s + 0.347·37-s + (−0.326 − 1.85i)41-s + (−0.5 + 0.866i)45-s + (−0.939 + 0.342i)47-s + (−0.673 − 1.16i)49-s + (1.17 + 0.984i)53-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.0389+0.999i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(−0.0389+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.0389+0.999i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1999,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), −0.0389+0.999i)
|
Particular Values
L(21) |
≈ |
1.283576315 |
L(21) |
≈ |
1.283576315 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.766+0.642i)T |
| 19 | 1+(−0.939−0.342i)T |
good | 3 | 1+(0.939−0.342i)T2 |
| 7 | 1+(−0.766+1.32i)T+(−0.5−0.866i)T2 |
| 11 | 1+(0.939+1.62i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.173−0.984i)T+(−0.939−0.342i)T2 |
| 17 | 1+(−0.766−0.642i)T2 |
| 23 | 1+(0.266+0.223i)T+(0.173+0.984i)T2 |
| 29 | 1+(−0.766+0.642i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−0.347T+T2 |
| 41 | 1+(0.326+1.85i)T+(−0.939+0.342i)T2 |
| 43 | 1+(−0.173+0.984i)T2 |
| 47 | 1+(0.939−0.342i)T+(0.766−0.642i)T2 |
| 53 | 1+(−1.17−0.984i)T+(0.173+0.984i)T2 |
| 59 | 1+(0.939+0.342i)T+(0.766+0.642i)T2 |
| 61 | 1+(−0.173−0.984i)T2 |
| 67 | 1+(−0.766+0.642i)T2 |
| 71 | 1+(−0.173+0.984i)T2 |
| 73 | 1+(0.939−0.342i)T2 |
| 79 | 1+(0.939−0.342i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+(−0.0603+0.342i)T+(−0.939−0.342i)T2 |
| 97 | 1+(−0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.634274994326864181555531677541, −8.040372957764707799912439155570, −7.38301311434810973425863949403, −6.28525436236880085429473393517, −5.55051530904007454597745996651, −4.99292076794807458579569145435, −4.05763911789926881279356050319, −3.03468110327645499546955445172, −1.93927786235634076111140753869, −0.77383324126801386941563652194,
1.79108073477511873239768111000, 2.59857289482275635214955875936, 3.11933602333262775517039295237, 4.79494576040320461209077361086, 5.33881415191275298543205370536, 5.85457488962895464714455699010, 6.81334860056388656915593088441, 7.72005411528345613503314620570, 8.246816976926065541630586078055, 9.197674659148863189845754087911