L(s) = 1 | + (−0.939 − 0.342i)5-s + (−0.939 + 1.62i)7-s + (0.173 − 0.984i)9-s + (0.173 + 0.300i)11-s + (−0.766 − 0.642i)13-s + (−0.173 − 0.984i)19-s + (1.43 − 0.524i)23-s + (0.766 + 0.642i)25-s + (1.43 − 1.20i)35-s + 1.53·37-s + (0.266 − 0.223i)41-s + (−0.5 + 0.866i)45-s + (0.173 − 0.984i)47-s + (−1.26 − 2.19i)49-s + (1.76 − 0.642i)53-s + ⋯ |
L(s) = 1 | + (−0.939 − 0.342i)5-s + (−0.939 + 1.62i)7-s + (0.173 − 0.984i)9-s + (0.173 + 0.300i)11-s + (−0.766 − 0.642i)13-s + (−0.173 − 0.984i)19-s + (1.43 − 0.524i)23-s + (0.766 + 0.642i)25-s + (1.43 − 1.20i)35-s + 1.53·37-s + (0.266 − 0.223i)41-s + (−0.5 + 0.866i)45-s + (0.173 − 0.984i)47-s + (−1.26 − 2.19i)49-s + (1.76 − 0.642i)53-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.776+0.630i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.776+0.630i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.776+0.630i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(2479,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), 0.776+0.630i)
|
Particular Values
L(21) |
≈ |
0.8283632252 |
L(21) |
≈ |
0.8283632252 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.939+0.342i)T |
| 19 | 1+(0.173+0.984i)T |
good | 3 | 1+(−0.173+0.984i)T2 |
| 7 | 1+(0.939−1.62i)T+(−0.5−0.866i)T2 |
| 11 | 1+(−0.173−0.300i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.766+0.642i)T+(0.173+0.984i)T2 |
| 17 | 1+(0.939−0.342i)T2 |
| 23 | 1+(−1.43+0.524i)T+(0.766−0.642i)T2 |
| 29 | 1+(0.939+0.342i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−1.53T+T2 |
| 41 | 1+(−0.266+0.223i)T+(0.173−0.984i)T2 |
| 43 | 1+(−0.766−0.642i)T2 |
| 47 | 1+(−0.173+0.984i)T+(−0.939−0.342i)T2 |
| 53 | 1+(−1.76+0.642i)T+(0.766−0.642i)T2 |
| 59 | 1+(−0.173−0.984i)T+(−0.939+0.342i)T2 |
| 61 | 1+(−0.766+0.642i)T2 |
| 67 | 1+(0.939+0.342i)T2 |
| 71 | 1+(−0.766−0.642i)T2 |
| 73 | 1+(−0.173+0.984i)T2 |
| 79 | 1+(−0.173+0.984i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+(−1.17−0.984i)T+(0.173+0.984i)T2 |
| 97 | 1+(0.939−0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.976997806834584138355982580804, −8.246175633957430755118627681121, −7.14276302368859511914308675213, −6.70639589959394736297046479084, −5.71676059993186316216817789727, −5.01824292005337655078145763847, −4.07756069142930175603478358339, −3.06443301939278088646734412685, −2.52168010905966672850359869151, −0.64067467067672329575512272227,
1.03919453577127541743804489423, 2.61321291617011192515873298522, 3.55363924755681795579210301510, 4.19783122384452092203941363153, 4.87478005986949804909436223498, 6.16193680918752231056092786398, 6.94549506706901215579479197078, 7.49104343354393624675865536338, 7.891457338490927725025834123085, 9.021901059314214538043786701329