L(s) = 1 | + (−0.939 − 0.342i)5-s + (−0.939 + 1.62i)7-s + (0.173 − 0.984i)9-s + (0.173 + 0.300i)11-s + (−0.766 − 0.642i)13-s + (−0.173 − 0.984i)19-s + (1.43 − 0.524i)23-s + (0.766 + 0.642i)25-s + (1.43 − 1.20i)35-s + 1.53·37-s + (0.266 − 0.223i)41-s + (−0.5 + 0.866i)45-s + (0.173 − 0.984i)47-s + (−1.26 − 2.19i)49-s + (1.76 − 0.642i)53-s + ⋯ |
L(s) = 1 | + (−0.939 − 0.342i)5-s + (−0.939 + 1.62i)7-s + (0.173 − 0.984i)9-s + (0.173 + 0.300i)11-s + (−0.766 − 0.642i)13-s + (−0.173 − 0.984i)19-s + (1.43 − 0.524i)23-s + (0.766 + 0.642i)25-s + (1.43 − 1.20i)35-s + 1.53·37-s + (0.266 − 0.223i)41-s + (−0.5 + 0.866i)45-s + (0.173 − 0.984i)47-s + (−1.26 − 2.19i)49-s + (1.76 − 0.642i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 + 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8283632252\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8283632252\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.939 + 0.342i)T \) |
| 19 | \( 1 + (0.173 + 0.984i)T \) |
good | 3 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 7 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (-1.43 + 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 1.53T + T^{2} \) |
| 41 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-1.17 - 0.984i)T + (0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (0.939 - 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.976997806834584138355982580804, −8.246175633957430755118627681121, −7.14276302368859511914308675213, −6.70639589959394736297046479084, −5.71676059993186316216817789727, −5.01824292005337655078145763847, −4.07756069142930175603478358339, −3.06443301939278088646734412685, −2.52168010905966672850359869151, −0.64067467067672329575512272227,
1.03919453577127541743804489423, 2.61321291617011192515873298522, 3.55363924755681795579210301510, 4.19783122384452092203941363153, 4.87478005986949804909436223498, 6.16193680918752231056092786398, 6.94549506706901215579479197078, 7.49104343354393624675865536338, 7.891457338490927725025834123085, 9.021901059314214538043786701329