L(s) = 1 | + (0.956 + 0.290i)2-s + (−0.871 + 0.360i)3-s + (0.831 + 0.555i)4-s + (0.382 − 0.923i)5-s + (−0.938 + 0.0924i)6-s + (0.634 + 0.773i)8-s + (−0.0785 + 0.0785i)9-s + (0.634 − 0.773i)10-s + (0.360 + 0.149i)11-s + (−0.924 − 0.183i)12-s + (0.761 + 1.83i)13-s + 0.942i·15-s + (0.382 + 0.923i)16-s + (−0.0980 + 0.0523i)18-s + (−0.382 − 0.923i)19-s + (0.831 − 0.555i)20-s + ⋯ |
L(s) = 1 | + (0.956 + 0.290i)2-s + (−0.871 + 0.360i)3-s + (0.831 + 0.555i)4-s + (0.382 − 0.923i)5-s + (−0.938 + 0.0924i)6-s + (0.634 + 0.773i)8-s + (−0.0785 + 0.0785i)9-s + (0.634 − 0.773i)10-s + (0.360 + 0.149i)11-s + (−0.924 − 0.183i)12-s + (0.761 + 1.83i)13-s + 0.942i·15-s + (0.382 + 0.923i)16-s + (−0.0980 + 0.0523i)18-s + (−0.382 − 0.923i)19-s + (0.831 − 0.555i)20-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.471−0.881i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.471−0.881i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.471−0.881i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(949,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), 0.471−0.881i)
|
Particular Values
L(21) |
≈ |
1.863863625 |
L(21) |
≈ |
1.863863625 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.956−0.290i)T |
| 5 | 1+(−0.382+0.923i)T |
| 19 | 1+(0.382+0.923i)T |
good | 3 | 1+(0.871−0.360i)T+(0.707−0.707i)T2 |
| 7 | 1−iT2 |
| 11 | 1+(−0.360−0.149i)T+(0.707+0.707i)T2 |
| 13 | 1+(−0.761−1.83i)T+(−0.707+0.707i)T2 |
| 17 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1+(−0.707+0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(0.222−0.536i)T+(−0.707−0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(−0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−1.62−0.674i)T+(0.707+0.707i)T2 |
| 59 | 1+(0.707+0.707i)T2 |
| 61 | 1+(−1.81+0.750i)T+(0.707−0.707i)T2 |
| 67 | 1+(1.42−0.591i)T+(0.707−0.707i)T2 |
| 71 | 1−iT2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1+(0.707−0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1+0.196T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.875084113698747895873089015063, −8.405059755971622569785303140780, −7.17698316200044613455468719574, −6.48636975555224171645684679263, −5.90545989880627795759039049971, −5.13749417801363517164258482494, −4.43867462456293721666133590885, −4.02146312378638022803487195060, −2.51651465628986762326535853705, −1.49629673416958868005094115038,
1.03005769980918105566605803683, 2.27971281519166682233513556309, 3.31133773199288018303229731885, 3.81756865684891612562796899493, 5.28695287708505383061402091816, 5.71235312704180918727632779015, 6.26065768935395910974721392236, 6.92123129038630338568334020808, 7.73171500138131488415179915006, 8.714659902840706230896294688921