L(s) = 1 | + (0.956 + 0.290i)2-s + (−0.871 + 0.360i)3-s + (0.831 + 0.555i)4-s + (0.382 − 0.923i)5-s + (−0.938 + 0.0924i)6-s + (0.634 + 0.773i)8-s + (−0.0785 + 0.0785i)9-s + (0.634 − 0.773i)10-s + (0.360 + 0.149i)11-s + (−0.924 − 0.183i)12-s + (0.761 + 1.83i)13-s + 0.942i·15-s + (0.382 + 0.923i)16-s + (−0.0980 + 0.0523i)18-s + (−0.382 − 0.923i)19-s + (0.831 − 0.555i)20-s + ⋯ |
L(s) = 1 | + (0.956 + 0.290i)2-s + (−0.871 + 0.360i)3-s + (0.831 + 0.555i)4-s + (0.382 − 0.923i)5-s + (−0.938 + 0.0924i)6-s + (0.634 + 0.773i)8-s + (−0.0785 + 0.0785i)9-s + (0.634 − 0.773i)10-s + (0.360 + 0.149i)11-s + (−0.924 − 0.183i)12-s + (0.761 + 1.83i)13-s + 0.942i·15-s + (0.382 + 0.923i)16-s + (−0.0980 + 0.0523i)18-s + (−0.382 − 0.923i)19-s + (0.831 − 0.555i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.863863625\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.863863625\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.956 - 0.290i)T \) |
| 5 | \( 1 + (-0.382 + 0.923i)T \) |
| 19 | \( 1 + (0.382 + 0.923i)T \) |
good | 3 | \( 1 + (0.871 - 0.360i)T + (0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-0.360 - 0.149i)T + (0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + (-0.761 - 1.83i)T + (-0.707 + 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.222 - 0.536i)T + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-1.62 - 0.674i)T + (0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (-1.81 + 0.750i)T + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + (1.42 - 0.591i)T + (0.707 - 0.707i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + 0.196T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.875084113698747895873089015063, −8.405059755971622569785303140780, −7.17698316200044613455468719574, −6.48636975555224171645684679263, −5.90545989880627795759039049971, −5.13749417801363517164258482494, −4.43867462456293721666133590885, −4.02146312378638022803487195060, −2.51651465628986762326535853705, −1.49629673416958868005094115038,
1.03005769980918105566605803683, 2.27971281519166682233513556309, 3.31133773199288018303229731885, 3.81756865684891612562796899493, 5.28695287708505383061402091816, 5.71235312704180918727632779015, 6.26065768935395910974721392236, 6.92123129038630338568334020808, 7.73171500138131488415179915006, 8.714659902840706230896294688921