L(s) = 1 | + (−0.0980 + 0.995i)2-s + (−0.485 + 1.17i)3-s + (−0.980 − 0.195i)4-s + (0.923 − 0.382i)5-s + (−1.11 − 0.598i)6-s + (0.290 − 0.956i)8-s + (−0.431 − 0.431i)9-s + (0.290 + 0.956i)10-s + (−0.636 − 1.53i)11-s + (0.704 − 1.05i)12-s + (−1.62 − 0.674i)13-s + 1.26i·15-s + (0.923 + 0.382i)16-s + (0.471 − 0.386i)18-s + (−0.923 − 0.382i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
L(s) = 1 | + (−0.0980 + 0.995i)2-s + (−0.485 + 1.17i)3-s + (−0.980 − 0.195i)4-s + (0.923 − 0.382i)5-s + (−1.11 − 0.598i)6-s + (0.290 − 0.956i)8-s + (−0.431 − 0.431i)9-s + (0.290 + 0.956i)10-s + (−0.636 − 1.53i)11-s + (0.704 − 1.05i)12-s + (−1.62 − 0.674i)13-s + 1.26i·15-s + (0.923 + 0.382i)16-s + (0.471 − 0.386i)18-s + (−0.923 − 0.382i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6613997505\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6613997505\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0980 - 0.995i)T \) |
| 5 | \( 1 + (-0.923 + 0.382i)T \) |
| 19 | \( 1 + (0.923 + 0.382i)T \) |
good | 3 | \( 1 + (0.485 - 1.17i)T + (-0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (0.636 + 1.53i)T + (-0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + (1.62 + 0.674i)T + (0.707 + 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-1.83 + 0.761i)T + (0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (0.591 + 1.42i)T + (-0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 61 | \( 1 + (0.425 - 1.02i)T + (-0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + (-0.732 + 1.76i)T + (-0.707 - 0.707i)T^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 - 0.942T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.977908305022199799240216839760, −8.219996180772111226129960218544, −7.47915756374086927150631445084, −6.32145726085141737324755166528, −5.80035890819315700977255259421, −5.05085562878261081525302158977, −4.75672765625438178658496183796, −3.62106719001609837940393254714, −2.45403260185718554689589925744, −0.44407513299358183793494515776,
1.43943600640463496749605405665, 2.23311602857593084641120276743, 2.64100705752942285895055988211, 4.32978046257333496282144650576, 4.90790196765971972943704790465, 5.88683945869376716748112407727, 6.69764653200904700338107956086, 7.42322255852609855744946757266, 7.945869708573167685691703437633, 9.253040933227427902877789536448