Properties

Label 2-3040-3040.1709-c0-0-5
Degree $2$
Conductor $3040$
Sign $0.995 - 0.0980i$
Analytic cond. $1.51715$
Root an. cond. $1.23172$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0980 + 0.995i)2-s + (−0.485 + 1.17i)3-s + (−0.980 − 0.195i)4-s + (0.923 − 0.382i)5-s + (−1.11 − 0.598i)6-s + (0.290 − 0.956i)8-s + (−0.431 − 0.431i)9-s + (0.290 + 0.956i)10-s + (−0.636 − 1.53i)11-s + (0.704 − 1.05i)12-s + (−1.62 − 0.674i)13-s + 1.26i·15-s + (0.923 + 0.382i)16-s + (0.471 − 0.386i)18-s + (−0.923 − 0.382i)19-s + (−0.980 + 0.195i)20-s + ⋯
L(s)  = 1  + (−0.0980 + 0.995i)2-s + (−0.485 + 1.17i)3-s + (−0.980 − 0.195i)4-s + (0.923 − 0.382i)5-s + (−1.11 − 0.598i)6-s + (0.290 − 0.956i)8-s + (−0.431 − 0.431i)9-s + (0.290 + 0.956i)10-s + (−0.636 − 1.53i)11-s + (0.704 − 1.05i)12-s + (−1.62 − 0.674i)13-s + 1.26i·15-s + (0.923 + 0.382i)16-s + (0.471 − 0.386i)18-s + (−0.923 − 0.382i)19-s + (−0.980 + 0.195i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3040\)    =    \(2^{5} \cdot 5 \cdot 19\)
Sign: $0.995 - 0.0980i$
Analytic conductor: \(1.51715\)
Root analytic conductor: \(1.23172\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3040} (1709, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3040,\ (\ :0),\ 0.995 - 0.0980i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6613997505\)
\(L(\frac12)\) \(\approx\) \(0.6613997505\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.0980 - 0.995i)T \)
5 \( 1 + (-0.923 + 0.382i)T \)
19 \( 1 + (0.923 + 0.382i)T \)
good3 \( 1 + (0.485 - 1.17i)T + (-0.707 - 0.707i)T^{2} \)
7 \( 1 + iT^{2} \)
11 \( 1 + (0.636 + 1.53i)T + (-0.707 + 0.707i)T^{2} \)
13 \( 1 + (1.62 + 0.674i)T + (0.707 + 0.707i)T^{2} \)
17 \( 1 + T^{2} \)
23 \( 1 - iT^{2} \)
29 \( 1 + (0.707 + 0.707i)T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + (-1.83 + 0.761i)T + (0.707 - 0.707i)T^{2} \)
41 \( 1 - iT^{2} \)
43 \( 1 + (0.707 - 0.707i)T^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 + (0.591 + 1.42i)T + (-0.707 + 0.707i)T^{2} \)
59 \( 1 + (-0.707 + 0.707i)T^{2} \)
61 \( 1 + (0.425 - 1.02i)T + (-0.707 - 0.707i)T^{2} \)
67 \( 1 + (-0.732 + 1.76i)T + (-0.707 - 0.707i)T^{2} \)
71 \( 1 + iT^{2} \)
73 \( 1 - iT^{2} \)
79 \( 1 + T^{2} \)
83 \( 1 + (-0.707 - 0.707i)T^{2} \)
89 \( 1 + iT^{2} \)
97 \( 1 - 0.942T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.977908305022199799240216839760, −8.219996180772111226129960218544, −7.47915756374086927150631445084, −6.32145726085141737324755166528, −5.80035890819315700977255259421, −5.05085562878261081525302158977, −4.75672765625438178658496183796, −3.62106719001609837940393254714, −2.45403260185718554689589925744, −0.44407513299358183793494515776, 1.43943600640463496749605405665, 2.23311602857593084641120276743, 2.64100705752942285895055988211, 4.32978046257333496282144650576, 4.90790196765971972943704790465, 5.88683945869376716748112407727, 6.69764653200904700338107956086, 7.42322255852609855744946757266, 7.945869708573167685691703437633, 9.253040933227427902877789536448

Graph of the $Z$-function along the critical line