L(s) = 1 | + (−0.0980 + 0.995i)2-s + (−0.485 + 1.17i)3-s + (−0.980 − 0.195i)4-s + (0.923 − 0.382i)5-s + (−1.11 − 0.598i)6-s + (0.290 − 0.956i)8-s + (−0.431 − 0.431i)9-s + (0.290 + 0.956i)10-s + (−0.636 − 1.53i)11-s + (0.704 − 1.05i)12-s + (−1.62 − 0.674i)13-s + 1.26i·15-s + (0.923 + 0.382i)16-s + (0.471 − 0.386i)18-s + (−0.923 − 0.382i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
L(s) = 1 | + (−0.0980 + 0.995i)2-s + (−0.485 + 1.17i)3-s + (−0.980 − 0.195i)4-s + (0.923 − 0.382i)5-s + (−1.11 − 0.598i)6-s + (0.290 − 0.956i)8-s + (−0.431 − 0.431i)9-s + (0.290 + 0.956i)10-s + (−0.636 − 1.53i)11-s + (0.704 − 1.05i)12-s + (−1.62 − 0.674i)13-s + 1.26i·15-s + (0.923 + 0.382i)16-s + (0.471 − 0.386i)18-s + (−0.923 − 0.382i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.995−0.0980i)Λ(1−s)
Λ(s)=(=(3040s/2ΓC(s)L(s)(0.995−0.0980i)Λ(1−s)
Degree: |
2 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.995−0.0980i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1709,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3040, ( :0), 0.995−0.0980i)
|
Particular Values
L(21) |
≈ |
0.6613997505 |
L(21) |
≈ |
0.6613997505 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0980−0.995i)T |
| 5 | 1+(−0.923+0.382i)T |
| 19 | 1+(0.923+0.382i)T |
good | 3 | 1+(0.485−1.17i)T+(−0.707−0.707i)T2 |
| 7 | 1+iT2 |
| 11 | 1+(0.636+1.53i)T+(−0.707+0.707i)T2 |
| 13 | 1+(1.62+0.674i)T+(0.707+0.707i)T2 |
| 17 | 1+T2 |
| 23 | 1−iT2 |
| 29 | 1+(0.707+0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−1.83+0.761i)T+(0.707−0.707i)T2 |
| 41 | 1−iT2 |
| 43 | 1+(0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(0.591+1.42i)T+(−0.707+0.707i)T2 |
| 59 | 1+(−0.707+0.707i)T2 |
| 61 | 1+(0.425−1.02i)T+(−0.707−0.707i)T2 |
| 67 | 1+(−0.732+1.76i)T+(−0.707−0.707i)T2 |
| 71 | 1+iT2 |
| 73 | 1−iT2 |
| 79 | 1+T2 |
| 83 | 1+(−0.707−0.707i)T2 |
| 89 | 1+iT2 |
| 97 | 1−0.942T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.977908305022199799240216839760, −8.219996180772111226129960218544, −7.47915756374086927150631445084, −6.32145726085141737324755166528, −5.80035890819315700977255259421, −5.05085562878261081525302158977, −4.75672765625438178658496183796, −3.62106719001609837940393254714, −2.45403260185718554689589925744, −0.44407513299358183793494515776,
1.43943600640463496749605405665, 2.23311602857593084641120276743, 2.64100705752942285895055988211, 4.32978046257333496282144650576, 4.90790196765971972943704790465, 5.88683945869376716748112407727, 6.69764653200904700338107956086, 7.42322255852609855744946757266, 7.945869708573167685691703437633, 9.253040933227427902877789536448