L(s) = 1 | + 3.69·5-s + (2.60 − 0.436i)7-s − 0.892·11-s + (0.598 + 1.03i)13-s + (0.124 + 0.216i)17-s + (−1.40 + 2.43i)19-s + 2.47·23-s + 8.63·25-s + (−2.07 + 3.58i)29-s + (1.79 − 3.10i)31-s + (9.63 − 1.61i)35-s + (−2.36 + 4.09i)37-s + (2.39 + 4.14i)41-s + (4.98 − 8.64i)43-s + (5.08 + 8.81i)47-s + ⋯ |
L(s) = 1 | + 1.65·5-s + (0.986 − 0.165i)7-s − 0.269·11-s + (0.165 + 0.287i)13-s + (0.0303 + 0.0525i)17-s + (−0.322 + 0.557i)19-s + 0.516·23-s + 1.72·25-s + (−0.384 + 0.666i)29-s + (0.321 − 0.557i)31-s + (1.62 − 0.272i)35-s + (−0.388 + 0.673i)37-s + (0.373 + 0.646i)41-s + (0.760 − 1.31i)43-s + (0.741 + 1.28i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 - 0.181i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.983 - 0.181i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.968959756\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.968959756\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.60 + 0.436i)T \) |
good | 5 | \( 1 - 3.69T + 5T^{2} \) |
| 11 | \( 1 + 0.892T + 11T^{2} \) |
| 13 | \( 1 + (-0.598 - 1.03i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.124 - 0.216i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.40 - 2.43i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 2.47T + 23T^{2} \) |
| 29 | \( 1 + (2.07 - 3.58i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.79 + 3.10i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.36 - 4.09i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.39 - 4.14i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.98 + 8.64i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.08 - 8.81i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.94 - 8.56i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.906 - 1.56i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.40 + 9.35i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.514 + 0.891i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.94T + 71T^{2} \) |
| 73 | \( 1 + (0.915 + 1.58i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.899 + 1.55i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.16 + 10.6i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.20 + 2.08i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.52 + 9.56i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.959065736527253661709924883723, −8.005295580089303755052072553893, −7.25110296618037797253610378989, −6.30300765909995686948182453670, −5.71492155739912026520233577654, −5.01059007979840123319937469866, −4.19271619975966582691733077588, −2.86962607826944326909164085834, −1.97440507665854235878317149291, −1.24700007580303937119236309587,
1.07309205254490532184112002194, 2.10343093901933944688236311368, 2.69798254483264302472268735913, 4.09462624731068945802589664849, 5.14213859224445401171137069671, 5.49907070260286821480693956112, 6.32785497126316397794422330964, 7.14527910434215888380750638831, 8.024100730212612000693276646763, 8.877309826473988690340244880104