L(s) = 1 | + (0.679 − 0.392i)5-s + (−2.49 + 0.891i)7-s + (1.22 + 0.708i)11-s + (−1.50 − 0.868i)13-s + (−5.43 + 3.13i)17-s + (0.736 − 1.27i)19-s + (4.85 − 2.80i)23-s + (−2.19 + 3.79i)25-s + (−3.95 − 6.85i)29-s + 8.41·31-s + (−1.34 + 1.58i)35-s + (3.74 − 6.48i)37-s + (−7.19 − 4.15i)41-s + (7.85 − 4.53i)43-s + 0.110·47-s + ⋯ |
L(s) = 1 | + (0.303 − 0.175i)5-s + (−0.941 + 0.337i)7-s + (0.369 + 0.213i)11-s + (−0.417 − 0.240i)13-s + (−1.31 + 0.761i)17-s + (0.168 − 0.292i)19-s + (1.01 − 0.584i)23-s + (−0.438 + 0.759i)25-s + (−0.734 − 1.27i)29-s + 1.51·31-s + (−0.227 + 0.267i)35-s + (0.615 − 1.06i)37-s + (−1.12 − 0.648i)41-s + (1.19 − 0.691i)43-s + 0.0160·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.303 + 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.303 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.244344752\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.244344752\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.49 - 0.891i)T \) |
good | 5 | \( 1 + (-0.679 + 0.392i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.22 - 0.708i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.50 + 0.868i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (5.43 - 3.13i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.736 + 1.27i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.85 + 2.80i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.95 + 6.85i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8.41T + 31T^{2} \) |
| 37 | \( 1 + (-3.74 + 6.48i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.19 + 4.15i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-7.85 + 4.53i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 0.110T + 47T^{2} \) |
| 53 | \( 1 + (-4.28 - 7.42i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 0.0736T + 59T^{2} \) |
| 61 | \( 1 - 1.23iT - 61T^{2} \) |
| 67 | \( 1 + 11.8iT - 67T^{2} \) |
| 71 | \( 1 + 0.390iT - 71T^{2} \) |
| 73 | \( 1 + (-3.70 + 2.13i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 6.00iT - 79T^{2} \) |
| 83 | \( 1 + (7.88 + 13.6i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.15 + 3.55i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.89 + 3.40i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.951275371799316862276104123841, −7.76537141203790756423605981465, −6.98483751396575947419021217576, −6.27320725432966259102032159580, −5.66338596862825417475708068703, −4.63011400284270973276828806956, −3.86766301072280169688860745128, −2.77508985490881074818916334500, −2.00211606494816303968815548998, −0.43763823093899098920805852734,
1.04771991370051157038709491006, 2.44659649820509311207478956119, 3.17093896888657420680147869788, 4.17872466838893754743342348960, 4.97518059652656590625867894689, 5.97188675685492782580225250442, 6.78360835912077471331175659890, 7.04282473359067296304494307823, 8.198869326866595112419441311565, 8.973768745580518077293600621977