Properties

Label 2-3024-1.1-c1-0-28
Degree $2$
Conductor $3024$
Sign $-1$
Analytic cond. $24.1467$
Root an. cond. $4.91393$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.37·5-s − 7-s + 4.37·13-s − 17-s + 4.74·19-s + 0.372·23-s + 6.37·25-s − 6.37·29-s − 8.37·31-s + 3.37·35-s − 1.37·37-s + 12.1·41-s + 3.74·43-s − 5.37·47-s + 49-s + 5.11·53-s − 11.7·59-s + 12.7·61-s − 14.7·65-s − 10.3·67-s − 1.62·71-s + 10·73-s − 8.11·79-s − 12.8·83-s + 3.37·85-s − 8.37·89-s − 4.37·91-s + ⋯
L(s)  = 1  − 1.50·5-s − 0.377·7-s + 1.21·13-s − 0.242·17-s + 1.08·19-s + 0.0776·23-s + 1.27·25-s − 1.18·29-s − 1.50·31-s + 0.570·35-s − 0.225·37-s + 1.89·41-s + 0.571·43-s − 0.783·47-s + 0.142·49-s + 0.702·53-s − 1.52·59-s + 1.63·61-s − 1.82·65-s − 1.26·67-s − 0.193·71-s + 1.17·73-s − 0.913·79-s − 1.41·83-s + 0.365·85-s − 0.887·89-s − 0.458·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $-1$
Analytic conductor: \(24.1467\)
Root analytic conductor: \(4.91393\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + 3.37T + 5T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 4.37T + 13T^{2} \)
17 \( 1 + T + 17T^{2} \)
19 \( 1 - 4.74T + 19T^{2} \)
23 \( 1 - 0.372T + 23T^{2} \)
29 \( 1 + 6.37T + 29T^{2} \)
31 \( 1 + 8.37T + 31T^{2} \)
37 \( 1 + 1.37T + 37T^{2} \)
41 \( 1 - 12.1T + 41T^{2} \)
43 \( 1 - 3.74T + 43T^{2} \)
47 \( 1 + 5.37T + 47T^{2} \)
53 \( 1 - 5.11T + 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 - 12.7T + 61T^{2} \)
67 \( 1 + 10.3T + 67T^{2} \)
71 \( 1 + 1.62T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 + 8.11T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 + 8.37T + 89T^{2} \)
97 \( 1 + 13.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.295677556840947776220722027118, −7.52659687321100870708055044611, −7.11205962859574104311465217125, −6.04231452713929068613488621839, −5.30267062943731806230074644355, −4.07701585976052204432811833329, −3.75590218098522388230191643648, −2.83907479515440083565343748314, −1.29551271199322453616608660683, 0, 1.29551271199322453616608660683, 2.83907479515440083565343748314, 3.75590218098522388230191643648, 4.07701585976052204432811833329, 5.30267062943731806230074644355, 6.04231452713929068613488621839, 7.11205962859574104311465217125, 7.52659687321100870708055044611, 8.295677556840947776220722027118

Graph of the $Z$-function along the critical line