Properties

Label 2-3015-335.334-c0-0-3
Degree $2$
Conductor $3015$
Sign $1$
Analytic cond. $1.50468$
Root an. cond. $1.22665$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 5-s − 7-s − 8-s − 10-s + 2·13-s − 14-s − 16-s + 2·19-s + 25-s + 2·26-s + 29-s + 35-s + 2·38-s + 40-s − 43-s + 50-s + 53-s + 56-s + 58-s + 59-s + 64-s − 2·65-s + 67-s + 70-s − 2·71-s + 80-s + ⋯
L(s)  = 1  + 2-s − 5-s − 7-s − 8-s − 10-s + 2·13-s − 14-s − 16-s + 2·19-s + 25-s + 2·26-s + 29-s + 35-s + 2·38-s + 40-s − 43-s + 50-s + 53-s + 56-s + 58-s + 59-s + 64-s − 2·65-s + 67-s + 70-s − 2·71-s + 80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3015 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3015 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3015\)    =    \(3^{2} \cdot 5 \cdot 67\)
Sign: $1$
Analytic conductor: \(1.50468\)
Root analytic conductor: \(1.22665\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3015} (334, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3015,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.440093309\)
\(L(\frac12)\) \(\approx\) \(1.440093309\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
67 \( 1 - T \)
good2 \( 1 - T + T^{2} \)
7 \( 1 + T + T^{2} \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( ( 1 - T )^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( 1 - T + T^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 + T + T^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( 1 - T + T^{2} \)
59 \( 1 - T + T^{2} \)
61 \( ( 1 - T )( 1 + T ) \)
71 \( ( 1 + T )^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( 1 - T + T^{2} \)
97 \( 1 + T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.774975206452880198988454127607, −8.275493696624421167515679595203, −7.20797069106514721874238687237, −6.48726052312562094555691538730, −5.79553068964746398695460871450, −4.99277492651023153742512674474, −4.02045941682050681089505072235, −3.44169671887910210063988449314, −2.98991309510037480883188611876, −0.963205255221829721369699682375, 0.963205255221829721369699682375, 2.98991309510037480883188611876, 3.44169671887910210063988449314, 4.02045941682050681089505072235, 4.99277492651023153742512674474, 5.79553068964746398695460871450, 6.48726052312562094555691538730, 7.20797069106514721874238687237, 8.275493696624421167515679595203, 8.774975206452880198988454127607

Graph of the $Z$-function along the critical line