L(s) = 1 | + (−1.42 + 1.32i)2-s + (−1.61 − 1.50i)3-s + (0.132 − 1.76i)4-s + (−0.0580 + 0.147i)5-s + 4.28·6-s + (−2.61 + 0.374i)7-s + (−0.273 − 0.342i)8-s + (0.139 + 1.86i)9-s + (−0.112 − 0.287i)10-s + (1.73 − 1.18i)11-s + (−2.86 + 2.66i)12-s + (1.98 + 2.48i)13-s + (3.23 − 3.99i)14-s + (0.315 − 0.152i)15-s + (4.35 + 0.655i)16-s + (1.03 + 2.63i)17-s + ⋯ |
L(s) = 1 | + (−1.00 + 0.934i)2-s + (−0.933 − 0.866i)3-s + (0.0663 − 0.884i)4-s + (−0.0259 + 0.0660i)5-s + 1.74·6-s + (−0.989 + 0.141i)7-s + (−0.0966 − 0.121i)8-s + (0.0465 + 0.621i)9-s + (−0.0356 − 0.0908i)10-s + (0.524 − 0.357i)11-s + (−0.828 + 0.768i)12-s + (0.550 + 0.689i)13-s + (0.864 − 1.06i)14-s + (0.0814 − 0.0392i)15-s + (1.08 + 0.163i)16-s + (0.250 + 0.639i)17-s + ⋯ |
Λ(s)=(=(301s/2ΓC(s)L(s)(0.200−0.979i)Λ(2−s)
Λ(s)=(=(301s/2ΓC(s+1/2)L(s)(0.200−0.979i)Λ(1−s)
Degree: |
2 |
Conductor: |
301
= 7⋅43
|
Sign: |
0.200−0.979i
|
Analytic conductor: |
2.40349 |
Root analytic conductor: |
1.55032 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ301(102,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 301, ( :1/2), 0.200−0.979i)
|
Particular Values
L(1) |
≈ |
0.335966+0.274167i |
L(21) |
≈ |
0.335966+0.274167i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(2.61−0.374i)T |
| 43 | 1+(−6.46−1.07i)T |
good | 2 | 1+(1.42−1.32i)T+(0.149−1.99i)T2 |
| 3 | 1+(1.61+1.50i)T+(0.224+2.99i)T2 |
| 5 | 1+(0.0580−0.147i)T+(−3.66−3.40i)T2 |
| 11 | 1+(−1.73+1.18i)T+(4.01−10.2i)T2 |
| 13 | 1+(−1.98−2.48i)T+(−2.89+12.6i)T2 |
| 17 | 1+(−1.03−2.63i)T+(−12.4+11.5i)T2 |
| 19 | 1+(0.0683+0.0465i)T+(6.94+17.6i)T2 |
| 23 | 1+(−0.240−3.20i)T+(−22.7+3.42i)T2 |
| 29 | 1+(0.0189+0.0829i)T+(−26.1+12.5i)T2 |
| 31 | 1+(−2.66−0.822i)T+(25.6+17.4i)T2 |
| 37 | 1+(−5.19−8.99i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.703+3.08i)T+(−36.9+17.7i)T2 |
| 47 | 1+(7.22+4.92i)T+(17.1+43.7i)T2 |
| 53 | 1+(0.0552+0.140i)T+(−38.8+36.0i)T2 |
| 59 | 1+(0.525+1.34i)T+(−43.2+40.1i)T2 |
| 61 | 1+(−2.28+0.703i)T+(50.4−34.3i)T2 |
| 67 | 1+(0.341−4.56i)T+(−66.2−9.98i)T2 |
| 71 | 1+(−10.4+5.03i)T+(44.2−55.5i)T2 |
| 73 | 1+(−6.94+1.04i)T+(69.7−21.5i)T2 |
| 79 | 1+(−5.09−8.82i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−1.89+8.29i)T+(−74.7−36.0i)T2 |
| 89 | 1+(8.33−2.57i)T+(73.5−50.1i)T2 |
| 97 | 1+(10.2+4.91i)T+(60.4+75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.93654828240678791348532602570, −11.00076234264314949996421961426, −9.777681921844717190499302219742, −9.012597493571933782233114916003, −7.989369933873725363979939269470, −6.78412591650695111301812802390, −6.51745377049782440145654000042, −5.61550050855060679014976658410, −3.54799135258761008847248331069, −1.11441075758458832040517557066,
0.62533048207159575063353192647, 2.78957758519385701137703001022, 4.14112448573167206785050145499, 5.49932576244558282492534880492, 6.52005036730415154252108036010, 8.031468776472691688569188959230, 9.251767817331853482553098936267, 9.787423774829198291495022235762, 10.60562037406433924350171910857, 11.13312900594306710445055920858