Properties

Label 2-301-301.100-c1-0-18
Degree $2$
Conductor $301$
Sign $0.804 + 0.593i$
Analytic cond. $2.40349$
Root an. cond. $1.55032$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0302 − 0.403i)2-s + (2.45 − 1.67i)3-s + (1.81 + 0.273i)4-s + (−0.669 + 2.93i)5-s + (−0.600 − 1.04i)6-s + (−2.63 + 0.280i)7-s + (0.345 − 1.51i)8-s + (2.12 − 5.41i)9-s + (1.16 + 0.358i)10-s + (0.441 − 1.12i)11-s + (4.91 − 2.36i)12-s + (1.48 + 1.37i)13-s + (0.0337 + 1.06i)14-s + (3.26 + 8.31i)15-s + (2.91 + 0.897i)16-s + (−1.45 − 6.35i)17-s + ⋯
L(s)  = 1  + (0.0213 − 0.285i)2-s + (1.41 − 0.965i)3-s + (0.907 + 0.136i)4-s + (−0.299 + 1.31i)5-s + (−0.245 − 0.424i)6-s + (−0.994 + 0.106i)7-s + (0.122 − 0.534i)8-s + (0.708 − 1.80i)9-s + (0.367 + 0.113i)10-s + (0.133 − 0.339i)11-s + (1.41 − 0.683i)12-s + (0.412 + 0.382i)13-s + (0.00901 + 0.285i)14-s + (0.842 + 2.14i)15-s + (0.727 + 0.224i)16-s + (−0.351 − 1.54i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 301 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.804 + 0.593i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 301 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.804 + 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(301\)    =    \(7 \cdot 43\)
Sign: $0.804 + 0.593i$
Analytic conductor: \(2.40349\)
Root analytic conductor: \(1.55032\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{301} (100, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 301,\ (\ :1/2),\ 0.804 + 0.593i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.01937 - 0.664394i\)
\(L(\frac12)\) \(\approx\) \(2.01937 - 0.664394i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (2.63 - 0.280i)T \)
43 \( 1 + (6.40 - 1.39i)T \)
good2 \( 1 + (-0.0302 + 0.403i)T + (-1.97 - 0.298i)T^{2} \)
3 \( 1 + (-2.45 + 1.67i)T + (1.09 - 2.79i)T^{2} \)
5 \( 1 + (0.669 - 2.93i)T + (-4.50 - 2.16i)T^{2} \)
11 \( 1 + (-0.441 + 1.12i)T + (-8.06 - 7.48i)T^{2} \)
13 \( 1 + (-1.48 - 1.37i)T + (0.971 + 12.9i)T^{2} \)
17 \( 1 + (1.45 + 6.35i)T + (-15.3 + 7.37i)T^{2} \)
19 \( 1 + (3.86 - 4.84i)T + (-4.22 - 18.5i)T^{2} \)
23 \( 1 + (1.91 + 2.40i)T + (-5.11 + 22.4i)T^{2} \)
29 \( 1 + (0.280 - 3.74i)T + (-28.6 - 4.32i)T^{2} \)
31 \( 1 + (0.304 - 4.06i)T + (-30.6 - 4.62i)T^{2} \)
37 \( 1 + 2.49T + 37T^{2} \)
41 \( 1 + (8.54 - 4.11i)T + (25.5 - 32.0i)T^{2} \)
47 \( 1 + (-1.88 - 4.81i)T + (-34.4 + 31.9i)T^{2} \)
53 \( 1 + (1.24 + 0.383i)T + (43.7 + 29.8i)T^{2} \)
59 \( 1 + (-9.73 + 9.03i)T + (4.40 - 58.8i)T^{2} \)
61 \( 1 + (0.337 + 4.49i)T + (-60.3 + 9.09i)T^{2} \)
67 \( 1 + (3.94 + 10.0i)T + (-49.1 + 45.5i)T^{2} \)
71 \( 1 + (4.82 + 12.3i)T + (-52.0 + 48.2i)T^{2} \)
73 \( 1 + (2.35 - 10.3i)T + (-65.7 - 31.6i)T^{2} \)
79 \( 1 + (-4.34 - 7.53i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (0.628 + 8.38i)T + (-82.0 + 12.3i)T^{2} \)
89 \( 1 + (-5.86 - 2.82i)T + (55.4 + 69.5i)T^{2} \)
97 \( 1 + (-9.84 - 12.3i)T + (-21.5 + 94.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.78619086680677985808065737197, −10.73716244650980557211726666591, −9.795575838330262833518958168125, −8.646361531823500431645221568666, −7.64458101955076257274364904558, −6.65477554095522967841531918932, −6.56376673557429102449594447299, −3.50184300138050707320455217443, −3.06532313321810264892362327152, −2.00248209145969802258605554905, 2.11013309964353521107877909474, 3.53216753602876103756198229438, 4.42851122887827946884338930777, 5.83015039575149699755194733276, 7.15561001228774811741726670588, 8.427899396175872534445648277163, 8.709592065953959332523014820604, 9.901471874819836764086493357229, 10.54149413832689992060874870060, 11.89029008036822171433884492484

Graph of the $Z$-function along the critical line