Properties

Label 2-301-301.100-c1-0-11
Degree $2$
Conductor $301$
Sign $0.981 + 0.191i$
Analytic cond. $2.40349$
Root an. cond. $1.55032$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0877 − 1.17i)2-s + (0.194 − 0.132i)3-s + (0.612 + 0.0923i)4-s + (−0.560 + 2.45i)5-s + (−0.138 − 0.239i)6-s + (1.67 + 2.04i)7-s + (0.684 − 3.00i)8-s + (−1.07 + 2.74i)9-s + (2.82 + 0.872i)10-s + (0.439 − 1.12i)11-s + (0.131 − 0.0633i)12-s + (2.14 + 1.98i)13-s + (2.54 − 1.78i)14-s + (0.216 + 0.552i)15-s + (−2.27 − 0.700i)16-s + (0.0818 + 0.358i)17-s + ⋯
L(s)  = 1  + (0.0620 − 0.828i)2-s + (0.112 − 0.0766i)3-s + (0.306 + 0.0461i)4-s + (−0.250 + 1.09i)5-s + (−0.0565 − 0.0978i)6-s + (0.633 + 0.773i)7-s + (0.242 − 1.06i)8-s + (−0.358 + 0.913i)9-s + (0.894 + 0.275i)10-s + (0.132 − 0.337i)11-s + (0.0379 − 0.0182i)12-s + (0.593 + 0.551i)13-s + (0.680 − 0.476i)14-s + (0.0560 + 0.142i)15-s + (−0.567 − 0.175i)16-s + (0.0198 + 0.0869i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 301 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.191i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 301 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.981 + 0.191i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(301\)    =    \(7 \cdot 43\)
Sign: $0.981 + 0.191i$
Analytic conductor: \(2.40349\)
Root analytic conductor: \(1.55032\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{301} (100, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 301,\ (\ :1/2),\ 0.981 + 0.191i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.59314 - 0.154025i\)
\(L(\frac12)\) \(\approx\) \(1.59314 - 0.154025i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-1.67 - 2.04i)T \)
43 \( 1 + (0.510 + 6.53i)T \)
good2 \( 1 + (-0.0877 + 1.17i)T + (-1.97 - 0.298i)T^{2} \)
3 \( 1 + (-0.194 + 0.132i)T + (1.09 - 2.79i)T^{2} \)
5 \( 1 + (0.560 - 2.45i)T + (-4.50 - 2.16i)T^{2} \)
11 \( 1 + (-0.439 + 1.12i)T + (-8.06 - 7.48i)T^{2} \)
13 \( 1 + (-2.14 - 1.98i)T + (0.971 + 12.9i)T^{2} \)
17 \( 1 + (-0.0818 - 0.358i)T + (-15.3 + 7.37i)T^{2} \)
19 \( 1 + (-1.19 + 1.49i)T + (-4.22 - 18.5i)T^{2} \)
23 \( 1 + (4.72 + 5.92i)T + (-5.11 + 22.4i)T^{2} \)
29 \( 1 + (-0.259 + 3.46i)T + (-28.6 - 4.32i)T^{2} \)
31 \( 1 + (-0.236 + 3.16i)T + (-30.6 - 4.62i)T^{2} \)
37 \( 1 + 6.08T + 37T^{2} \)
41 \( 1 + (-2.94 + 1.41i)T + (25.5 - 32.0i)T^{2} \)
47 \( 1 + (-0.400 - 1.02i)T + (-34.4 + 31.9i)T^{2} \)
53 \( 1 + (-3.04 - 0.940i)T + (43.7 + 29.8i)T^{2} \)
59 \( 1 + (3.36 - 3.12i)T + (4.40 - 58.8i)T^{2} \)
61 \( 1 + (-0.885 - 11.8i)T + (-60.3 + 9.09i)T^{2} \)
67 \( 1 + (0.605 + 1.54i)T + (-49.1 + 45.5i)T^{2} \)
71 \( 1 + (-1.60 - 4.07i)T + (-52.0 + 48.2i)T^{2} \)
73 \( 1 + (-2.51 + 11.0i)T + (-65.7 - 31.6i)T^{2} \)
79 \( 1 + (-0.636 - 1.10i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-0.0821 - 1.09i)T + (-82.0 + 12.3i)T^{2} \)
89 \( 1 + (15.4 + 7.43i)T + (55.4 + 69.5i)T^{2} \)
97 \( 1 + (-4.75 - 5.96i)T + (-21.5 + 94.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.56132409184889092071468058680, −10.91992831350954919235489204765, −10.30656031955638888161170384638, −8.887015822142099928856794822784, −7.896382097184426752612169620159, −6.85752243806350162751434745671, −5.81285548250450270136715179213, −4.18945892716136432615180723660, −2.86743622341930231176775626766, −2.03896960498043439181508025693, 1.37929811807650162424354632843, 3.60000649286890082302005988357, 4.87035252662526839658625093362, 5.80018981129193848941534998729, 6.95841884331647317882036314178, 7.966289754626595747879784014431, 8.565350538451461968021926104207, 9.739900895116190688621835464320, 10.95412048461315023846688555722, 11.79950601934872785948458010944

Graph of the $Z$-function along the critical line