Properties

Label 2-301-1.1-c1-0-19
Degree $2$
Conductor $301$
Sign $-1$
Analytic cond. $2.40349$
Root an. cond. $1.55032$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.06·2-s − 0.326·3-s − 0.873·4-s − 3.24·5-s − 0.346·6-s + 7-s − 3.04·8-s − 2.89·9-s − 3.44·10-s − 3.51·11-s + 0.285·12-s + 3.47·13-s + 1.06·14-s + 1.06·15-s − 1.49·16-s − 4.60·17-s − 3.07·18-s + 4.37·19-s + 2.83·20-s − 0.326·21-s − 3.73·22-s − 1.10·23-s + 0.996·24-s + 5.56·25-s + 3.69·26-s + 1.92·27-s − 0.873·28-s + ⋯
L(s)  = 1  + 0.750·2-s − 0.188·3-s − 0.436·4-s − 1.45·5-s − 0.141·6-s + 0.377·7-s − 1.07·8-s − 0.964·9-s − 1.09·10-s − 1.05·11-s + 0.0823·12-s + 0.965·13-s + 0.283·14-s + 0.274·15-s − 0.372·16-s − 1.11·17-s − 0.723·18-s + 1.00·19-s + 0.634·20-s − 0.0712·21-s − 0.795·22-s − 0.231·23-s + 0.203·24-s + 1.11·25-s + 0.724·26-s + 0.370·27-s − 0.165·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 301 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 301 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(301\)    =    \(7 \cdot 43\)
Sign: $-1$
Analytic conductor: \(2.40349\)
Root analytic conductor: \(1.55032\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 301,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - T \)
43 \( 1 - T \)
good2 \( 1 - 1.06T + 2T^{2} \)
3 \( 1 + 0.326T + 3T^{2} \)
5 \( 1 + 3.24T + 5T^{2} \)
11 \( 1 + 3.51T + 11T^{2} \)
13 \( 1 - 3.47T + 13T^{2} \)
17 \( 1 + 4.60T + 17T^{2} \)
19 \( 1 - 4.37T + 19T^{2} \)
23 \( 1 + 1.10T + 23T^{2} \)
29 \( 1 + 7.18T + 29T^{2} \)
31 \( 1 - 1.25T + 31T^{2} \)
37 \( 1 + 7.20T + 37T^{2} \)
41 \( 1 - 8.91T + 41T^{2} \)
47 \( 1 + 2.54T + 47T^{2} \)
53 \( 1 + 0.312T + 53T^{2} \)
59 \( 1 + 10.7T + 59T^{2} \)
61 \( 1 + 2.59T + 61T^{2} \)
67 \( 1 + 8.46T + 67T^{2} \)
71 \( 1 - 8.92T + 71T^{2} \)
73 \( 1 + 8.68T + 73T^{2} \)
79 \( 1 + 12.6T + 79T^{2} \)
83 \( 1 + 1.64T + 83T^{2} \)
89 \( 1 - 6.82T + 89T^{2} \)
97 \( 1 - 0.914T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.40796677997079829953232460894, −10.80510964399719611107674759292, −9.117510192574497393095227455867, −8.351797377646347940488861806143, −7.51724631548305982638459039112, −5.98740429167446979125463969639, −5.04713632479100961847997212421, −4.03445856088550102793791588746, −3.03962472791435211558083694504, 0, 3.03962472791435211558083694504, 4.03445856088550102793791588746, 5.04713632479100961847997212421, 5.98740429167446979125463969639, 7.51724631548305982638459039112, 8.351797377646347940488861806143, 9.117510192574497393095227455867, 10.80510964399719611107674759292, 11.40796677997079829953232460894

Graph of the $Z$-function along the critical line