| L(s) = 1 | + i·2-s + i·3-s − 4-s − 6-s − i·8-s − 9-s − 0.618·11-s − i·12-s − 1.61i·13-s + 16-s − 1.61i·17-s − i·18-s − 0.618i·22-s − 0.618i·23-s + 24-s + ⋯ |
| L(s) = 1 | + i·2-s + i·3-s − 4-s − 6-s − i·8-s − 9-s − 0.618·11-s − i·12-s − 1.61i·13-s + 16-s − 1.61i·17-s − i·18-s − 0.618i·22-s − 0.618i·23-s + 24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6337150071\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6337150071\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - iT \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 0.618T + T^{2} \) |
| 13 | \( 1 + 1.61iT - T^{2} \) |
| 17 | \( 1 + 1.61iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + 0.618iT - T^{2} \) |
| 29 | \( 1 + 1.61T + T^{2} \) |
| 31 | \( 1 - 0.618T + T^{2} \) |
| 37 | \( 1 + 0.618iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 0.618iT - T^{2} \) |
| 47 | \( 1 + 1.61iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + 1.61T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.61iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 1.61T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.906609289613079372957572183580, −8.042455131951304710764753121467, −7.60933751161767848633789734327, −6.60250083578198930953071448477, −5.55806267412328746995464962930, −5.28027451744770670558395144279, −4.48001195707926905185271710867, −3.46302573654444977406016926780, −2.72138162976815785165794055604, −0.39133585430441749381621944950,
1.52953448317087691110654397746, 2.01079151461349706238624390780, 3.14725204987242702228728696487, 4.01621930066492584043331091809, 4.95793805511434338215085702895, 5.92396404271262933102473759447, 6.56010354428797255821423360697, 7.70247955250251179754081613891, 8.105397061463694308312303097442, 9.073632414706238269986022242723