| L(s) = 1 | + (−0.156 − 0.987i)2-s + (0.707 − 0.707i)3-s + (−0.951 + 0.309i)4-s + (−0.809 − 0.587i)6-s + (0.453 + 0.891i)8-s − 1.00i·9-s + (−0.453 + 0.891i)12-s + (0.809 − 0.587i)16-s + (−0.437 − 0.437i)17-s + (−0.987 + 0.156i)18-s − 1.61i·19-s + (1.34 + 1.34i)23-s + (0.951 + 0.309i)24-s + (−0.707 − 0.707i)27-s − 1.90i·31-s + (−0.707 − 0.707i)32-s + ⋯ |
| L(s) = 1 | + (−0.156 − 0.987i)2-s + (0.707 − 0.707i)3-s + (−0.951 + 0.309i)4-s + (−0.809 − 0.587i)6-s + (0.453 + 0.891i)8-s − 1.00i·9-s + (−0.453 + 0.891i)12-s + (0.809 − 0.587i)16-s + (−0.437 − 0.437i)17-s + (−0.987 + 0.156i)18-s − 1.61i·19-s + (1.34 + 1.34i)23-s + (0.951 + 0.309i)24-s + (−0.707 − 0.707i)27-s − 1.90i·31-s + (−0.707 − 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.238622855\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.238622855\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.156 + 0.987i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (0.437 + 0.437i)T + iT^{2} \) |
| 19 | \( 1 + 1.61iT - T^{2} \) |
| 23 | \( 1 + (-1.34 - 1.34i)T + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + 1.90iT - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.831 - 0.831i)T - iT^{2} \) |
| 53 | \( 1 + (0.831 + 0.831i)T + iT^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 1.17iT - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - 1.17T + T^{2} \) |
| 83 | \( 1 + (-1.14 + 1.14i)T - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.836965744708412286746222988080, −7.911672538443768421518584706143, −7.33390865574629412819938990104, −6.50555715392937822198351221577, −5.33153895149365422475474705842, −4.50194424109315458820191480996, −3.49067935759549958158787008376, −2.77463110028854884801726478209, −1.97684587860473898081114525085, −0.78663039336676680411010756623,
1.58887881654982909435850703792, 3.03039086503546177723656275994, 3.86169374170973125935725898949, 4.70111815830441370150393993797, 5.29731734359834411864668277817, 6.32697120457053372371846932645, 6.98122765666304280028167578127, 8.001840801213475232553319700852, 8.361027552076931357535336525668, 9.090078763436972611822277251330