| L(s) = 1 | + (0.156 + 0.987i)2-s + (−0.707 + 0.707i)3-s + (−0.951 + 0.309i)4-s + (−0.809 − 0.587i)6-s + (−0.453 − 0.891i)8-s − 1.00i·9-s + (0.453 − 0.891i)12-s + (0.809 − 0.587i)16-s + (0.437 + 0.437i)17-s + (0.987 − 0.156i)18-s − 1.61i·19-s + (−1.34 − 1.34i)23-s + (0.951 + 0.309i)24-s + (0.707 + 0.707i)27-s − 1.90i·31-s + (0.707 + 0.707i)32-s + ⋯ |
| L(s) = 1 | + (0.156 + 0.987i)2-s + (−0.707 + 0.707i)3-s + (−0.951 + 0.309i)4-s + (−0.809 − 0.587i)6-s + (−0.453 − 0.891i)8-s − 1.00i·9-s + (0.453 − 0.891i)12-s + (0.809 − 0.587i)16-s + (0.437 + 0.437i)17-s + (0.987 − 0.156i)18-s − 1.61i·19-s + (−1.34 − 1.34i)23-s + (0.951 + 0.309i)24-s + (0.707 + 0.707i)27-s − 1.90i·31-s + (0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.891 - 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.891 - 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7351898214\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7351898214\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.156 - 0.987i)T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (-0.437 - 0.437i)T + iT^{2} \) |
| 19 | \( 1 + 1.61iT - T^{2} \) |
| 23 | \( 1 + (1.34 + 1.34i)T + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + 1.90iT - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.831 + 0.831i)T - iT^{2} \) |
| 53 | \( 1 + (-0.831 - 0.831i)T + iT^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 1.17iT - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - 1.17T + T^{2} \) |
| 83 | \( 1 + (1.14 - 1.14i)T - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.884953980193077585594673795077, −8.253784955162389306765440565923, −7.29342437926365302359012004344, −6.57588650610513232162627667430, −5.89420077203523276337459854008, −5.27415117160562716649465563345, −4.31662784059314622917664128536, −3.94503554763126344709919605129, −2.61765860455199710730710007309, −0.53452421486130079287224393577,
1.24315813780761323139749738347, 1.98328577559691015743287289669, 3.18425297650594233280018557085, 4.03352682482588481060001680601, 5.09308638172566405936413247834, 5.66496599892148537191515532568, 6.37485100026037278055600825219, 7.54011997417212356811724771397, 8.025019381280907618292035684009, 8.937658942818684339571617439376