Properties

Label 2-3000-1.1-c1-0-34
Degree $2$
Conductor $3000$
Sign $-1$
Analytic cond. $23.9551$
Root an. cond. $4.89439$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 0.618·7-s + 9-s − 3·11-s + 3·13-s − 1.85·17-s + 0.236·19-s − 0.618·21-s − 23-s − 27-s − 8.70·29-s − 1.38·31-s + 3·33-s + 5·37-s − 3·39-s + 5.09·41-s + 1.14·43-s − 9.47·47-s − 6.61·49-s + 1.85·51-s + 12.5·53-s − 0.236·57-s − 9.09·59-s + 2.32·61-s + 0.618·63-s + 8·67-s + 69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.233·7-s + 0.333·9-s − 0.904·11-s + 0.832·13-s − 0.449·17-s + 0.0541·19-s − 0.134·21-s − 0.208·23-s − 0.192·27-s − 1.61·29-s − 0.248·31-s + 0.522·33-s + 0.821·37-s − 0.480·39-s + 0.794·41-s + 0.174·43-s − 1.38·47-s − 0.945·49-s + 0.259·51-s + 1.72·53-s − 0.0312·57-s − 1.18·59-s + 0.297·61-s + 0.0778·63-s + 0.977·67-s + 0.120·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3000\)    =    \(2^{3} \cdot 3 \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(23.9551\)
Root analytic conductor: \(4.89439\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3000,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 - 0.618T + 7T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 - 3T + 13T^{2} \)
17 \( 1 + 1.85T + 17T^{2} \)
19 \( 1 - 0.236T + 19T^{2} \)
23 \( 1 + T + 23T^{2} \)
29 \( 1 + 8.70T + 29T^{2} \)
31 \( 1 + 1.38T + 31T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 - 5.09T + 41T^{2} \)
43 \( 1 - 1.14T + 43T^{2} \)
47 \( 1 + 9.47T + 47T^{2} \)
53 \( 1 - 12.5T + 53T^{2} \)
59 \( 1 + 9.09T + 59T^{2} \)
61 \( 1 - 2.32T + 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 + 3.14T + 71T^{2} \)
73 \( 1 + 0.381T + 73T^{2} \)
79 \( 1 + 14.1T + 79T^{2} \)
83 \( 1 + 5.38T + 83T^{2} \)
89 \( 1 + 3.47T + 89T^{2} \)
97 \( 1 - 0.618T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.254777884451253461837492894245, −7.63418460299726467343764435523, −6.81939465447280868039880363710, −5.93688146102876986082494030169, −5.40542832447722486977301417196, −4.49074337003268988208339441893, −3.67423346327403702267435335864, −2.52312433960917950022670243840, −1.42855235278323048841428005593, 0, 1.42855235278323048841428005593, 2.52312433960917950022670243840, 3.67423346327403702267435335864, 4.49074337003268988208339441893, 5.40542832447722486977301417196, 5.93688146102876986082494030169, 6.81939465447280868039880363710, 7.63418460299726467343764435523, 8.254777884451253461837492894245

Graph of the $Z$-function along the critical line