Properties

Label 2-3000-1.1-c1-0-31
Degree $2$
Conductor $3000$
Sign $-1$
Analytic cond. $23.9551$
Root an. cond. $4.89439$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3.42·7-s + 9-s + 5.73·11-s + 0.116·13-s − 7.04·17-s + 1.31·19-s + 3.42·21-s + 1.92·23-s − 27-s + 2.85·29-s − 7.89·31-s − 5.73·33-s − 0.813·37-s − 0.116·39-s − 6.66·41-s + 5.70·43-s + 9.84·47-s + 4.73·49-s + 7.04·51-s + 4.39·53-s − 1.31·57-s + 5.04·59-s + 0.970·61-s − 3.42·63-s − 6.09·67-s − 1.92·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.29·7-s + 0.333·9-s + 1.72·11-s + 0.0323·13-s − 1.70·17-s + 0.301·19-s + 0.747·21-s + 0.401·23-s − 0.192·27-s + 0.529·29-s − 1.41·31-s − 0.997·33-s − 0.133·37-s − 0.0186·39-s − 1.04·41-s + 0.870·43-s + 1.43·47-s + 0.675·49-s + 0.985·51-s + 0.603·53-s − 0.173·57-s + 0.657·59-s + 0.124·61-s − 0.431·63-s − 0.744·67-s − 0.231·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3000\)    =    \(2^{3} \cdot 3 \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(23.9551\)
Root analytic conductor: \(4.89439\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3000,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 + 3.42T + 7T^{2} \)
11 \( 1 - 5.73T + 11T^{2} \)
13 \( 1 - 0.116T + 13T^{2} \)
17 \( 1 + 7.04T + 17T^{2} \)
19 \( 1 - 1.31T + 19T^{2} \)
23 \( 1 - 1.92T + 23T^{2} \)
29 \( 1 - 2.85T + 29T^{2} \)
31 \( 1 + 7.89T + 31T^{2} \)
37 \( 1 + 0.813T + 37T^{2} \)
41 \( 1 + 6.66T + 41T^{2} \)
43 \( 1 - 5.70T + 43T^{2} \)
47 \( 1 - 9.84T + 47T^{2} \)
53 \( 1 - 4.39T + 53T^{2} \)
59 \( 1 - 5.04T + 59T^{2} \)
61 \( 1 - 0.970T + 61T^{2} \)
67 \( 1 + 6.09T + 67T^{2} \)
71 \( 1 + 6.08T + 71T^{2} \)
73 \( 1 + 11.4T + 73T^{2} \)
79 \( 1 - 4.73T + 79T^{2} \)
83 \( 1 - 12.8T + 83T^{2} \)
89 \( 1 + 14.1T + 89T^{2} \)
97 \( 1 + 7.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.650665809785014649392663335105, −7.20305138256450010479777782769, −6.78863374139174621766650647223, −6.23969907239242197255971816402, −5.41502603674012578062355412580, −4.24865643906729250313568657947, −3.76721326222479689109317461427, −2.62394879733219069902123799911, −1.34142434991149659103037998140, 0, 1.34142434991149659103037998140, 2.62394879733219069902123799911, 3.76721326222479689109317461427, 4.24865643906729250313568657947, 5.41502603674012578062355412580, 6.23969907239242197255971816402, 6.78863374139174621766650647223, 7.20305138256450010479777782769, 8.650665809785014649392663335105

Graph of the $Z$-function along the critical line