Properties

Label 2-3000-1.1-c1-0-23
Degree $2$
Conductor $3000$
Sign $1$
Analytic cond. $23.9551$
Root an. cond. $4.89439$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3.35·7-s + 9-s − 0.740·11-s + 3.81·13-s + 1.61·17-s + 0.839·19-s + 3.35·21-s + 2.74·23-s + 27-s − 3.05·29-s + 1.77·31-s − 0.740·33-s − 4.89·37-s + 3.81·39-s + 5.11·41-s + 0.145·43-s + 2.65·47-s + 4.28·49-s + 1.61·51-s − 10.6·53-s + 0.839·57-s − 14.9·59-s + 14.9·61-s + 3.35·63-s + 8.41·67-s + 2.74·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.26·7-s + 0.333·9-s − 0.223·11-s + 1.05·13-s + 0.392·17-s + 0.192·19-s + 0.732·21-s + 0.571·23-s + 0.192·27-s − 0.566·29-s + 0.319·31-s − 0.128·33-s − 0.804·37-s + 0.611·39-s + 0.798·41-s + 0.0222·43-s + 0.387·47-s + 0.611·49-s + 0.226·51-s − 1.46·53-s + 0.111·57-s − 1.94·59-s + 1.91·61-s + 0.423·63-s + 1.02·67-s + 0.329·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3000\)    =    \(2^{3} \cdot 3 \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(23.9551\)
Root analytic conductor: \(4.89439\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.941149922\)
\(L(\frac12)\) \(\approx\) \(2.941149922\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 - 3.35T + 7T^{2} \)
11 \( 1 + 0.740T + 11T^{2} \)
13 \( 1 - 3.81T + 13T^{2} \)
17 \( 1 - 1.61T + 17T^{2} \)
19 \( 1 - 0.839T + 19T^{2} \)
23 \( 1 - 2.74T + 23T^{2} \)
29 \( 1 + 3.05T + 29T^{2} \)
31 \( 1 - 1.77T + 31T^{2} \)
37 \( 1 + 4.89T + 37T^{2} \)
41 \( 1 - 5.11T + 41T^{2} \)
43 \( 1 - 0.145T + 43T^{2} \)
47 \( 1 - 2.65T + 47T^{2} \)
53 \( 1 + 10.6T + 53T^{2} \)
59 \( 1 + 14.9T + 59T^{2} \)
61 \( 1 - 14.9T + 61T^{2} \)
67 \( 1 - 8.41T + 67T^{2} \)
71 \( 1 - 3.43T + 71T^{2} \)
73 \( 1 - 5.75T + 73T^{2} \)
79 \( 1 - 0.0327T + 79T^{2} \)
83 \( 1 + 10.5T + 83T^{2} \)
89 \( 1 - 1.60T + 89T^{2} \)
97 \( 1 + 3.11T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.619081700531555395037285181248, −8.032495423495040099997824397076, −7.47311039673412969479342789029, −6.52364970784281231616938771922, −5.55824221003085886156814727246, −4.84633127318268902696500725362, −3.96258262190347648521034249658, −3.11362963645510737408212883653, −1.99330523325770970324148244167, −1.12428973580978937860598813942, 1.12428973580978937860598813942, 1.99330523325770970324148244167, 3.11362963645510737408212883653, 3.96258262190347648521034249658, 4.84633127318268902696500725362, 5.55824221003085886156814727246, 6.52364970784281231616938771922, 7.47311039673412969479342789029, 8.032495423495040099997824397076, 8.619081700531555395037285181248

Graph of the $Z$-function along the critical line