Properties

Label 2-3000-1.1-c1-0-16
Degree $2$
Conductor $3000$
Sign $1$
Analytic cond. $23.9551$
Root an. cond. $4.89439$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s + 2·11-s + 5.23·13-s + 0.381·17-s + 3.85·19-s − 2·21-s + 7.61·23-s − 27-s + 2.47·29-s − 8.09·31-s − 2·33-s − 8.94·37-s − 5.23·39-s − 9.70·41-s − 5.23·43-s + 8.61·47-s − 3·49-s − 0.381·51-s + 10.3·53-s − 3.85·57-s + 4·59-s − 2.14·61-s + 2·63-s + 2.47·67-s − 7.61·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 0.333·9-s + 0.603·11-s + 1.45·13-s + 0.0926·17-s + 0.884·19-s − 0.436·21-s + 1.58·23-s − 0.192·27-s + 0.459·29-s − 1.45·31-s − 0.348·33-s − 1.47·37-s − 0.838·39-s − 1.51·41-s − 0.798·43-s + 1.25·47-s − 0.428·49-s − 0.0534·51-s + 1.41·53-s − 0.510·57-s + 0.520·59-s − 0.274·61-s + 0.251·63-s + 0.302·67-s − 0.917·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3000\)    =    \(2^{3} \cdot 3 \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(23.9551\)
Root analytic conductor: \(4.89439\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3000,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.983783777\)
\(L(\frac12)\) \(\approx\) \(1.983783777\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 - 2T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 - 5.23T + 13T^{2} \)
17 \( 1 - 0.381T + 17T^{2} \)
19 \( 1 - 3.85T + 19T^{2} \)
23 \( 1 - 7.61T + 23T^{2} \)
29 \( 1 - 2.47T + 29T^{2} \)
31 \( 1 + 8.09T + 31T^{2} \)
37 \( 1 + 8.94T + 37T^{2} \)
41 \( 1 + 9.70T + 41T^{2} \)
43 \( 1 + 5.23T + 43T^{2} \)
47 \( 1 - 8.61T + 47T^{2} \)
53 \( 1 - 10.3T + 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 2.14T + 61T^{2} \)
67 \( 1 - 2.47T + 67T^{2} \)
71 \( 1 - 7.70T + 71T^{2} \)
73 \( 1 - 7.70T + 73T^{2} \)
79 \( 1 + 1.09T + 79T^{2} \)
83 \( 1 - 4.61T + 83T^{2} \)
89 \( 1 - 7.70T + 89T^{2} \)
97 \( 1 - 4.76T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.781182970935087876160193834153, −8.031236625730183765512644093588, −7.02676399489855611427944843089, −6.60309407657920898869297798758, −5.42809963085353009721213431589, −5.15235391209609133221610787549, −3.95799879473017197447544644161, −3.29966310376399475953764791190, −1.75774167150624577489283223705, −0.974661879025616798555728787660, 0.974661879025616798555728787660, 1.75774167150624577489283223705, 3.29966310376399475953764791190, 3.95799879473017197447544644161, 5.15235391209609133221610787549, 5.42809963085353009721213431589, 6.60309407657920898869297798758, 7.02676399489855611427944843089, 8.031236625730183765512644093588, 8.781182970935087876160193834153

Graph of the $Z$-function along the critical line