L(s) = 1 | − 81·3-s − 4.03e3·7-s + 6.56e3·9-s + 3.58e4·13-s − 2.58e5·19-s + 3.26e5·21-s − 5.31e5·27-s − 1.80e6·31-s − 5.03e5·37-s − 2.90e6·39-s − 3.49e6·43-s + 1.05e7·49-s + 2.09e7·57-s − 2.38e7·61-s − 2.64e7·63-s + 5.42e6·67-s − 1.61e7·73-s − 1.88e7·79-s + 4.30e7·81-s − 1.44e8·91-s + 1.46e8·93-s − 1.76e8·97-s − 4.44e7·103-s + 2.03e8·109-s + 4.07e7·111-s + 2.34e8·117-s + ⋯ |
L(s) = 1 | − 3-s − 1.68·7-s + 9-s + 1.25·13-s − 1.98·19-s + 1.68·21-s − 27-s − 1.95·31-s − 0.268·37-s − 1.25·39-s − 1.02·43-s + 1.82·49-s + 1.98·57-s − 1.72·61-s − 1.68·63-s + 0.269·67-s − 0.569·73-s − 0.484·79-s + 81-s − 2.10·91-s + 1.95·93-s − 1.99·97-s − 0.394·103-s + 1.43·109-s + 0.268·111-s + 1.25·117-s + ⋯ |
Λ(s)=(=(300s/2ΓC(s)L(s)Λ(9−s)
Λ(s)=(=(300s/2ΓC(s+4)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
300
= 22⋅3⋅52
|
Sign: |
1
|
Analytic conductor: |
122.213 |
Root analytic conductor: |
11.0550 |
Motivic weight: |
8 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ300(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 300, ( :4), 1)
|
Particular Values
L(29) |
≈ |
0.4718276703 |
L(21) |
≈ |
0.4718276703 |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p4T |
| 5 | 1 |
good | 7 | 1+4034T+p8T2 |
| 11 | (1−p4T)(1+p4T) |
| 13 | 1−35806T+p8T2 |
| 17 | (1−p4T)(1+p4T) |
| 19 | 1+258526T+p8T2 |
| 23 | (1−p4T)(1+p4T) |
| 29 | (1−p4T)(1+p4T) |
| 31 | 1+1809406T+p8T2 |
| 37 | 1+503522T+p8T2 |
| 41 | (1−p4T)(1+p4T) |
| 43 | 1+3492194T+p8T2 |
| 47 | (1−p4T)(1+p4T) |
| 53 | (1−p4T)(1+p4T) |
| 59 | (1−p4T)(1+p4T) |
| 61 | 1+23826526T+p8T2 |
| 67 | 1−5421406T+p8T2 |
| 71 | (1−p4T)(1+p4T) |
| 73 | 1+16169282T+p8T2 |
| 79 | 1+18887038T+p8T2 |
| 83 | (1−p4T)(1+p4T) |
| 89 | (1−p4T)(1+p4T) |
| 97 | 1+176908034T+p8T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.51532472881295099328083754157, −9.539547682592394203517530895662, −8.599418640384385595667162935738, −7.07554235602067965365868065674, −6.34824307044109561116322102624, −5.72917899004978767422508595316, −4.24661101133806357365297148874, −3.36564351286681277656071627671, −1.75582856761493510062648144327, −0.32804838935866592474990223094,
0.32804838935866592474990223094, 1.75582856761493510062648144327, 3.36564351286681277656071627671, 4.24661101133806357365297148874, 5.72917899004978767422508595316, 6.34824307044109561116322102624, 7.07554235602067965365868065674, 8.599418640384385595667162935738, 9.539547682592394203517530895662, 10.51532472881295099328083754157