Properties

Label 2-300-3.2-c8-0-13
Degree $2$
Conductor $300$
Sign $1$
Analytic cond. $122.213$
Root an. cond. $11.0550$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 81·3-s − 4.03e3·7-s + 6.56e3·9-s + 3.58e4·13-s − 2.58e5·19-s + 3.26e5·21-s − 5.31e5·27-s − 1.80e6·31-s − 5.03e5·37-s − 2.90e6·39-s − 3.49e6·43-s + 1.05e7·49-s + 2.09e7·57-s − 2.38e7·61-s − 2.64e7·63-s + 5.42e6·67-s − 1.61e7·73-s − 1.88e7·79-s + 4.30e7·81-s − 1.44e8·91-s + 1.46e8·93-s − 1.76e8·97-s − 4.44e7·103-s + 2.03e8·109-s + 4.07e7·111-s + 2.34e8·117-s + ⋯
L(s)  = 1  − 3-s − 1.68·7-s + 9-s + 1.25·13-s − 1.98·19-s + 1.68·21-s − 27-s − 1.95·31-s − 0.268·37-s − 1.25·39-s − 1.02·43-s + 1.82·49-s + 1.98·57-s − 1.72·61-s − 1.68·63-s + 0.269·67-s − 0.569·73-s − 0.484·79-s + 81-s − 2.10·91-s + 1.95·93-s − 1.99·97-s − 0.394·103-s + 1.43·109-s + 0.268·111-s + 1.25·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(122.213\)
Root analytic conductor: \(11.0550\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: $\chi_{300} (101, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.4718276703\)
\(L(\frac12)\) \(\approx\) \(0.4718276703\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{4} T \)
5 \( 1 \)
good7 \( 1 + 4034 T + p^{8} T^{2} \)
11 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
13 \( 1 - 35806 T + p^{8} T^{2} \)
17 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
19 \( 1 + 258526 T + p^{8} T^{2} \)
23 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
29 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
31 \( 1 + 1809406 T + p^{8} T^{2} \)
37 \( 1 + 503522 T + p^{8} T^{2} \)
41 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
43 \( 1 + 3492194 T + p^{8} T^{2} \)
47 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
53 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
59 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
61 \( 1 + 23826526 T + p^{8} T^{2} \)
67 \( 1 - 5421406 T + p^{8} T^{2} \)
71 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
73 \( 1 + 16169282 T + p^{8} T^{2} \)
79 \( 1 + 18887038 T + p^{8} T^{2} \)
83 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
89 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
97 \( 1 + 176908034 T + p^{8} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51532472881295099328083754157, −9.539547682592394203517530895662, −8.599418640384385595667162935738, −7.07554235602067965365868065674, −6.34824307044109561116322102624, −5.72917899004978767422508595316, −4.24661101133806357365297148874, −3.36564351286681277656071627671, −1.75582856761493510062648144327, −0.32804838935866592474990223094, 0.32804838935866592474990223094, 1.75582856761493510062648144327, 3.36564351286681277656071627671, 4.24661101133806357365297148874, 5.72917899004978767422508595316, 6.34824307044109561116322102624, 7.07554235602067965365868065674, 8.599418640384385595667162935738, 9.539547682592394203517530895662, 10.51532472881295099328083754157

Graph of the $Z$-function along the critical line