L(s) = 1 | + (2.95 − 0.5i)3-s + 8i·7-s + (8.5 − 2.95i)9-s + 17.7i·11-s − 2i·13-s + 17.7·17-s − 11·19-s + (4 + 23.6i)21-s + 35.4·23-s + (23.6 − 13i)27-s − 35.4i·29-s − 46·31-s + (8.87 + 52.5i)33-s − 16i·37-s + (−1 − 5.91i)39-s + ⋯ |
L(s) = 1 | + (0.986 − 0.166i)3-s + 1.14i·7-s + (0.944 − 0.328i)9-s + 1.61i·11-s − 0.153i·13-s + 1.04·17-s − 0.578·19-s + (0.190 + 1.12i)21-s + 1.54·23-s + (0.876 − 0.481i)27-s − 1.22i·29-s − 1.48·31-s + (0.268 + 1.59i)33-s − 0.432i·37-s + (−0.0256 − 0.151i)39-s + ⋯ |
Λ(s)=(=(300s/2ΓC(s)L(s)(0.807−0.590i)Λ(3−s)
Λ(s)=(=(300s/2ΓC(s+1)L(s)(0.807−0.590i)Λ(1−s)
Degree: |
2 |
Conductor: |
300
= 22⋅3⋅52
|
Sign: |
0.807−0.590i
|
Analytic conductor: |
8.17440 |
Root analytic conductor: |
2.85909 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ300(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 300, ( :1), 0.807−0.590i)
|
Particular Values
L(23) |
≈ |
2.19162+0.715467i |
L(21) |
≈ |
2.19162+0.715467i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−2.95+0.5i)T |
| 5 | 1 |
good | 7 | 1−8iT−49T2 |
| 11 | 1−17.7iT−121T2 |
| 13 | 1+2iT−169T2 |
| 17 | 1−17.7T+289T2 |
| 19 | 1+11T+361T2 |
| 23 | 1−35.4T+529T2 |
| 29 | 1+35.4iT−841T2 |
| 31 | 1+46T+961T2 |
| 37 | 1+16iT−1.36e3T2 |
| 41 | 1−53.2iT−1.68e3T2 |
| 43 | 1+62iT−1.84e3T2 |
| 47 | 1−35.4T+2.20e3T2 |
| 53 | 1+35.4T+2.80e3T2 |
| 59 | 1−70.9iT−3.48e3T2 |
| 61 | 1+16T+3.72e3T2 |
| 67 | 1−113iT−4.48e3T2 |
| 71 | 1+106.iT−5.04e3T2 |
| 73 | 1+101iT−5.32e3T2 |
| 79 | 1+68T+6.24e3T2 |
| 83 | 1+17.7T+6.88e3T2 |
| 89 | 1+53.2iT−7.92e3T2 |
| 97 | 1+22iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.92297636633297638917520635762, −10.46553843191443300928557737252, −9.495068947522083547376367144686, −8.905890747446024166977293500952, −7.77840162007580419900345731076, −6.99626340442483195494221904805, −5.58088591713682884143870267690, −4.33569133529852055960664991271, −2.89701602767129349658174197167, −1.83328191531635504418544631323,
1.15344968064700163055068012612, 3.09538553677403797475582856573, 3.85639682646753472871634804551, 5.26040036256378964311798677800, 6.77152207805068020533276548506, 7.66500390149678367963005145053, 8.598538582553715181023395968327, 9.410529747760460790978163433070, 10.61757081764020898536996632337, 11.04458868014183475795383365079