L(s) = 1 | + (2.95 − 0.5i)3-s + 8i·7-s + (8.5 − 2.95i)9-s + 17.7i·11-s − 2i·13-s + 17.7·17-s − 11·19-s + (4 + 23.6i)21-s + 35.4·23-s + (23.6 − 13i)27-s − 35.4i·29-s − 46·31-s + (8.87 + 52.5i)33-s − 16i·37-s + (−1 − 5.91i)39-s + ⋯ |
L(s) = 1 | + (0.986 − 0.166i)3-s + 1.14i·7-s + (0.944 − 0.328i)9-s + 1.61i·11-s − 0.153i·13-s + 1.04·17-s − 0.578·19-s + (0.190 + 1.12i)21-s + 1.54·23-s + (0.876 − 0.481i)27-s − 1.22i·29-s − 1.48·31-s + (0.268 + 1.59i)33-s − 0.432i·37-s + (−0.0256 − 0.151i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.807 - 0.590i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.807 - 0.590i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.19162 + 0.715467i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.19162 + 0.715467i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.95 + 0.5i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 8iT - 49T^{2} \) |
| 11 | \( 1 - 17.7iT - 121T^{2} \) |
| 13 | \( 1 + 2iT - 169T^{2} \) |
| 17 | \( 1 - 17.7T + 289T^{2} \) |
| 19 | \( 1 + 11T + 361T^{2} \) |
| 23 | \( 1 - 35.4T + 529T^{2} \) |
| 29 | \( 1 + 35.4iT - 841T^{2} \) |
| 31 | \( 1 + 46T + 961T^{2} \) |
| 37 | \( 1 + 16iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 53.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 62iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 35.4T + 2.20e3T^{2} \) |
| 53 | \( 1 + 35.4T + 2.80e3T^{2} \) |
| 59 | \( 1 - 70.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 16T + 3.72e3T^{2} \) |
| 67 | \( 1 - 113iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 106. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 101iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 68T + 6.24e3T^{2} \) |
| 83 | \( 1 + 17.7T + 6.88e3T^{2} \) |
| 89 | \( 1 + 53.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 22iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92297636633297638917520635762, −10.46553843191443300928557737252, −9.495068947522083547376367144686, −8.905890747446024166977293500952, −7.77840162007580419900345731076, −6.99626340442483195494221904805, −5.58088591713682884143870267690, −4.33569133529852055960664991271, −2.89701602767129349658174197167, −1.83328191531635504418544631323,
1.15344968064700163055068012612, 3.09538553677403797475582856573, 3.85639682646753472871634804551, 5.26040036256378964311798677800, 6.77152207805068020533276548506, 7.66500390149678367963005145053, 8.598538582553715181023395968327, 9.410529747760460790978163433070, 10.61757081764020898536996632337, 11.04458868014183475795383365079