L(s) = 1 | + (−1.14 + 0.827i)2-s + (0.891 − 0.453i)3-s + (0.631 − 1.89i)4-s + (−2.20 − 0.377i)5-s + (−0.646 + 1.25i)6-s + (0.312 − 0.312i)7-s + (0.844 + 2.69i)8-s + (0.587 − 0.809i)9-s + (2.84 − 1.39i)10-s + (−0.610 − 0.840i)11-s + (−0.298 − 1.97i)12-s + (5.63 − 0.892i)13-s + (−0.0999 + 0.616i)14-s + (−2.13 + 0.664i)15-s + (−3.20 − 2.39i)16-s + (3.24 − 6.36i)17-s + ⋯ |
L(s) = 1 | + (−0.811 + 0.584i)2-s + (0.514 − 0.262i)3-s + (0.315 − 0.948i)4-s + (−0.985 − 0.168i)5-s + (−0.263 + 0.513i)6-s + (0.118 − 0.118i)7-s + (0.298 + 0.954i)8-s + (0.195 − 0.269i)9-s + (0.898 − 0.439i)10-s + (−0.184 − 0.253i)11-s + (−0.0862 − 0.570i)12-s + (1.56 − 0.247i)13-s + (−0.0267 + 0.164i)14-s + (−0.551 + 0.171i)15-s + (−0.800 − 0.599i)16-s + (0.786 − 1.54i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 + 0.637i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.770 + 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.837318 - 0.301753i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.837318 - 0.301753i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.14 - 0.827i)T \) |
| 3 | \( 1 + (-0.891 + 0.453i)T \) |
| 5 | \( 1 + (2.20 + 0.377i)T \) |
good | 7 | \( 1 + (-0.312 + 0.312i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.610 + 0.840i)T + (-3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-5.63 + 0.892i)T + (12.3 - 4.01i)T^{2} \) |
| 17 | \( 1 + (-3.24 + 6.36i)T + (-9.99 - 13.7i)T^{2} \) |
| 19 | \( 1 + (2.11 + 6.50i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (2.01 + 0.318i)T + (21.8 + 7.10i)T^{2} \) |
| 29 | \( 1 + (-0.380 - 0.123i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3.67 - 1.19i)T + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.746 + 4.71i)T + (-35.1 + 11.4i)T^{2} \) |
| 41 | \( 1 + (-0.813 - 0.590i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-5.34 - 5.34i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.64 - 7.15i)T + (-27.6 + 38.0i)T^{2} \) |
| 53 | \( 1 + (-4.32 - 8.49i)T + (-31.1 + 42.8i)T^{2} \) |
| 59 | \( 1 + (9.01 + 6.54i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-0.00534 + 0.00388i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (11.0 + 5.61i)T + (39.3 + 54.2i)T^{2} \) |
| 71 | \( 1 + (-3.28 - 1.06i)T + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (0.742 - 4.68i)T + (-69.4 - 22.5i)T^{2} \) |
| 79 | \( 1 + (4.96 - 15.2i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-3.00 + 5.89i)T + (-48.7 - 67.1i)T^{2} \) |
| 89 | \( 1 + (1.83 + 2.53i)T + (-27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-1.36 + 0.695i)T + (57.0 - 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27374538931785797429893402487, −10.84004186918788568592007494486, −9.336045777564646777858934091079, −8.728969881605856299070410248963, −7.78964476931208112983869441719, −7.16970001224769413286786569085, −5.92258524116702655671200914122, −4.53378846130591469725990652835, −2.96561169217227801271227144429, −0.886716408207889199510855476207,
1.72459978886284598889037216753, 3.53917087953481988147640842842, 3.99245661807823000305590472579, 6.09745541570196782983931399377, 7.48778427962878366835021145494, 8.302507740480519249834817616845, 8.757282034933428870953716007859, 10.23642420960530188287301146994, 10.64546255807731906914860149856, 11.75462106678606293449372115460