L(s) = 1 | + (1.33 − 0.472i)2-s + (−0.891 + 0.453i)3-s + (1.55 − 1.25i)4-s + (1.01 + 1.99i)5-s + (−0.973 + 1.02i)6-s + (0.189 − 0.189i)7-s + (1.47 − 2.41i)8-s + (0.587 − 0.809i)9-s + (2.29 + 2.17i)10-s + (2.68 + 3.69i)11-s + (−0.812 + 1.82i)12-s + (−1.66 + 0.263i)13-s + (0.163 − 0.342i)14-s + (−1.80 − 1.31i)15-s + (0.828 − 3.91i)16-s + (2.52 − 4.95i)17-s + ⋯ |
L(s) = 1 | + (0.942 − 0.333i)2-s + (−0.514 + 0.262i)3-s + (0.776 − 0.629i)4-s + (0.452 + 0.891i)5-s + (−0.397 + 0.418i)6-s + (0.0717 − 0.0717i)7-s + (0.522 − 0.852i)8-s + (0.195 − 0.269i)9-s + (0.724 + 0.689i)10-s + (0.808 + 1.11i)11-s + (−0.234 + 0.527i)12-s + (−0.462 + 0.0731i)13-s + (0.0436 − 0.0915i)14-s + (−0.466 − 0.340i)15-s + (0.207 − 0.978i)16-s + (0.611 − 1.20i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0183i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0183i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.09375 + 0.0192113i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.09375 + 0.0192113i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.33 + 0.472i)T \) |
| 3 | \( 1 + (0.891 - 0.453i)T \) |
| 5 | \( 1 + (-1.01 - 1.99i)T \) |
good | 7 | \( 1 + (-0.189 + 0.189i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.68 - 3.69i)T + (-3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (1.66 - 0.263i)T + (12.3 - 4.01i)T^{2} \) |
| 17 | \( 1 + (-2.52 + 4.95i)T + (-9.99 - 13.7i)T^{2} \) |
| 19 | \( 1 + (0.186 + 0.574i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (3.67 + 0.581i)T + (21.8 + 7.10i)T^{2} \) |
| 29 | \( 1 + (-3.14 - 1.02i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (6.47 - 2.10i)T + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.372 + 2.35i)T + (-35.1 + 11.4i)T^{2} \) |
| 41 | \( 1 + (9.30 + 6.76i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-0.00980 - 0.00980i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.17 + 2.31i)T + (-27.6 + 38.0i)T^{2} \) |
| 53 | \( 1 + (4.53 + 8.89i)T + (-31.1 + 42.8i)T^{2} \) |
| 59 | \( 1 + (-3.15 - 2.29i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (9.40 - 6.83i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (6.49 + 3.30i)T + (39.3 + 54.2i)T^{2} \) |
| 71 | \( 1 + (-12.6 - 4.09i)T + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (0.770 - 4.86i)T + (-69.4 - 22.5i)T^{2} \) |
| 79 | \( 1 + (-4.17 + 12.8i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (3.42 - 6.72i)T + (-48.7 - 67.1i)T^{2} \) |
| 89 | \( 1 + (-4.20 - 5.78i)T + (-27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (0.917 - 0.467i)T + (57.0 - 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89226712250151306276149785889, −10.92705710494336995064850979108, −10.07126602143981105767447275208, −9.456753879696228798638628567648, −7.29319501371539943111898220055, −6.76820706159290407196838688545, −5.60926746588969588490660937658, −4.63284482831721960809009448779, −3.39264288156590478348342924653, −1.96554194397238350990804277236,
1.67394581514406536289974816778, 3.58032899241007717443825845386, 4.79808628670086740297392275250, 5.83196721817750222205306545404, 6.36882560552128221208520100877, 7.83630286714408935051368940875, 8.624396951468068564541425058943, 9.995475655358149810052775238567, 11.15388274078272252978656911604, 12.03483285136731522522639842469